• Title/Summary/Keyword: dairy effluent

Search Result 17, Processing Time 0.026 seconds

Evaluation for the simultaneous Removal of Organic Matters and Nutrients by the RBC and tapered Aeration Processes with Bacillus sp. for the high Strength of Dairy Wastewater (바실러스 미생물을 이용한 고농도 유가공 폐수처리에 있어서 유기물질과 영양염류의 동시제거에 대한 평가)

  • Lee, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.195-202
    • /
    • 2010
  • The evaluation of organic matters and nutrients removal was investigated for the synthetic wastewater and the high strength of dairy wastewater. Two different systems were performed for this research. System A composing of a single RBC with tapered aeration was fed with the synthetic wastewater for 74 days with 173L/day of influent, 200% of internal return and 100% of sludge return for the period 1 and 2. The feed conditions were maintained 346L/day of influent, 50% of internal return and sludge return for the period 3. The dairy wastewater was introduced to evaluate treatment efficiency for system B composing of dual RBCs and tapered aeration tanks for 50 days of experimental run time, in which hydraulic rates were maintained at the constant ratios of 346L/day, 50% of internal return and 50% of sludge return. The spiral string media made of nylon fibre was attached by Bacillus sp. in RBC for both systems. The specific area of string media was $1.4m^2$/m and biomass was maintained at the concentrations of 23g/m. The synthetic wastewater was supplied by 1,800mg/L of glucose, 500mg/L of $NH_4Cl$, and 500mg/L of $KH_2PO_4$ to system A. The dairy wastewater was supplied to system B from dairy production plant. The average influent concentrations were 1,334mg/L of BOD, 2,014mg/L of CODcr, 160mg/L of T-N, and 12mg/L of T-P in system A. The average influent concentrations of parameters were 1,006 mg/L for BOD, 1,875mg/L for $COD_{cr}$, 51.6mg/L for T-N and 8.9mg/L for T-P in system B. Results indicated that removal efficiencies of BOD and $COD_{cr}$ were more than 90% however, the removal efficiency of T-N was 87%, and that of T-P was 82% for system A. Removal efficiencies were 98.5% of BOD, 91.3% of nitrogen and 89% of phosphorus for system B. The removal efficiencies of organic matters, T-N and T-P were higher in system B than in system A. The effluent quality issued by the stringent national legislations for the discharge of the high strength of dairy products wastewater can be improved using sequential RBCsand tapered aeration reactors rather than a single RBC and tapered aeration reactors with Bacillus sp.

Treatment Level of a Pond System for Ecological Treatment and Recycling of Animal Excreta (생태적 축산폐수 처리 및 재활용 연못시스템의 폐수처리수준)

  • Yang, Hong-Mo;Rhee, Chong-Ouk
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.70-75
    • /
    • 1998
  • A model of pond system is developed for treatment and recycling of excreta from twenty-five adult dairy cattle. It is composed of wastewater treatment ponds and small fish ponds. Those are three facultative ponds in series; primary-secondary-tertiary pond and these are designed to rear carps without feeding. A pit is constructed at the bottom of primary pond for efficient sludge sedimentation and effective methane fermentation. It is contrived to block into it the penetration of oxygen dissolved in the upper layer of pond water. The excreta from the cattle housed in stalls are diluted by water used for clearing them. The washed excreta flow into the pit. The average yearly $BOD_5$ concentration of influent is 398.7mg/l. That of the effluent from primary, secondary and tertiary pond of the system is 49.18, 27.9, and 19.8.mg/l respectively. Approximate 88, 93, and 95 % of BOD5 are removed in each pond. The mean yearly SS concentration of influent is 360.5 mg/l That of the effluent from each pond is 53.4, 45.7, and32.7mg/l respectively. Approximate 86, 88, and 91% of SS are removed in each pond. The $BOD_5$ concentration of secondary and tertiary pond can satisfy 30mg/l secondary treatment standard. The SS concentration of effluent from tertiary pond, however, is slightly greater than the standard, which results from activities of carps growing in the pond. The average yearly total nitrogen concentration of influent is 206.8mg/l and that of the effluent from each pond is 48.6, 30.8, and 21.0mg/l respectively. Approximate 74, 88, and 90% of total nitrogen are removed in each pond. The mean yearly total phosphorous concentration of influent is 20.7mg/l and that of the effluent from each pond is 5.3, 3.2, and 2.1mg/l respectively. Approximate 97, 98, and 99% of total phosphorous are removed in each pond. The high removal of nitrogen and phosphorous results from active growth of algae in the upper layer of pond water. Important pond design parameters for southern part of Korea -- areal loading of BOD5, liquid depth, hydraulic detention time, free board, and pond arrangement -- are taken up.

  • PDF

Application of magnetic activated sludge process for a milking parlor wastewater treatment with nitrogen and phosphorus recovery

  • Onodera, Toshihito;Sakai, Yasuzo;Kashiwazaki, Masaru;Ihara, Ikko;Lal, Saha Mihir
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.20-25
    • /
    • 2021
  • Milking parlor wastewater contains high concentration suspended solid (SS), nitrogen, and/or phosphate as well as organic compounds. A new biological wastewater process by magnetic separation, magnetic activated sludge (MAS) process, was applied to milking parlor wastewater treatment process. A three step wastewater treatment process of coagulation sedimentation / ammonia stripping (C/S), magnetic activated sludge process and contact oxidation (CO) was proposed for removal of these pollutants. First step, C/S process recovered 96% TN and 96% PO43--P as resource for fertilizer from the wastewater. 81% biochemical oxygen demand (BOD) in wastewater was removed after MAS process. As a results, all pollutant concentrations satisfied Japanese effluent standards. Most of residual BOD and SS were removed by the CO process. It was estimated that the proposed process could reduce the process space to 1/7.

Effect of Pre-wilting on the Forage Quality of Organic Sorghum$\times$Sudangrass Silage (예건이 수수$\times$수단그라스 교잡종 유기 사일리지의 품질에 미치는 영향)

  • Lim, Hyun-Jin;Kim, Jong-Duk;Lee, Hyun-Jin;Jeon, Kyeong-Hup;Yang, Ka-Young;Kwon, Chan-Ho;Yoon, Sei-Hyung
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.4
    • /
    • pp.519-527
    • /
    • 2009
  • The main nutritional problem of sorghum$\times$sudangrass hybrid silage is low quality and dry matter (DM) contents. This experiment was conducted to evaluate whether field pre-wilting treatment of sorghum$\times$sudangrass hybrid silage increases DM content and forage quality of the silage. The experiment was a randomized complete block design with three replications. The treatments were consisted of five different wilting days: 0 day (direct cut silage), 0.5 day, 1 day, 2 days and 3 days. Sorghum$\times$sudangrass hybrid silage with pre-wilting showed low 4.00 pH values, however direct cut silage (control) showed a 4.30 value because of its high moisture content. The DM content of sorghum$\times$sudangrass hybrid silage with pre-wilting was high above 25.1% after 1 days, however that of direct cut silage had 17.6%. And the effluent of wilted silage was decreased with prolonged wilting period, but that of direct cut silage produced effluent of 183 mL/kg. Crude protein and ether extract with wilted silage were decreased, however crude ash was increased with prolonged wilting period. Silage with pre-wilting had higher acid detergent fiber (ADF) and neutral detergent fiber (NDF) contents than control silages, while its non-fiber carbohydrate (NFC) showed the opposite results. Lactic acid and total organic acid were increased with prolonged wilting period. For the palatability of dairy goat, silage with 2 days wilting was highest among silages. The experiment results indicate that wilted sorghum$\times$sudangrass hybrid silage could be recommended as effective method for reducing effluent, increasing pH and forage quality more than direct cut silage. Optimum pre-wilting day of sorghum$\times$sudangrass hybrid silage may be 1 days.

  • PDF

Estimation of Influence of Milking System Type on Milking Center Effluent Amount and its Characteristics (착유시스템 유형별 세척수의 발생량과 특성)

  • Choi, D.Y.;Kwag, J.H.;Park, C.H.;Jeong, K.H.;Kim, J.H.;Yoo, Y.H.;Jeong, M.S.;Han, C.B.;Choi, H.L.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.3
    • /
    • pp.149-158
    • /
    • 2008
  • The purpose of this study was to determine the effect of milking system type on milking center effluent production through the four seasons. Four different types of milking systems (Bucket, Pipeline, Tandem and Herringbone) were estimated, in duplicate, through the different seasons. The following conclusions can be drawn from this study. 1. The quantity of wastewater produced from Tandem and Herringbone milking systems were significantly larger than Bucket milking system (p<0.05). 2. The main wastewater production was from the washing of milking apparatus. Tandem and Herringbone milking systems produced 398.8 and $407.7{\ell}$/day of wastewater, respectively, for apparatus washing. These values were significantly higher than the other milking systems during the summer (p<0.05). 3. The average wastewater production from the various milking systems was $15.4{\ell}$/head/day. The quantity of wastewater production during summer ($16.4{\ell}$/head/day) season was higher than of the other seasons. 4. The highest level of $BOD_5$ ($906.4mg/\ell$) was produced from the washing of the parlor floor and the lowest level of $BOD_5$ ($212.4mg/\ell$) was produced from the washing of the udders of the cows. 5. The pH of dairy wastewater was in the range of $7.3{\sim}8.2$ and the average levels of $BOD_5$, COD, SS, T-N, and T-P were 731.2, 479.0, 751.6, 79.1, $14.7mg/\ell$, respectively. Following conclusions can be drawn from this experiment. The quantities of wastewater production from Bucket, Pipeline, Tandem and Herringbone milking system were 143.9, 487.9, 914.0, and $856.7{\ell}$, respectively. The average wastewater produced from the milking systems was $15.4{\ell}$/head per day. In order to effectively manage on the wastewater from milking systems, dairy farms need to consider the milking system type and farm size when determining the optimum wastewater treatment system.

  • PDF

Methane Fermentation of Pit in Pond System for Ecological Treatment and Recycling of Animal Excreta (생태적 축산폐수 처리 및 재활용 연못시스템의 Pit 메탄발효)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.2
    • /
    • pp.191-195
    • /
    • 1999
  • An integrated wastewater treatment pond system is developed for treatment and recycling of excreta from dairy cattle. It is composed of three ponds in series. A pit with a capacity of $10m^3$, 2-day hydraulic residence time, and overflow velocity of $1.5m^3m^{-2}day^{-1}$ is located internally in primary pond. It is designed for efficient sludge sedimentation and effective methane fermentation. It receives $5m^3/day$ of diluted cattle excreta by the water used for clearing stalls. A submerged gays collector for the recovery of methane is installed on the top of the pit. The average BOD_5 concentration of influent is 398.7mg/l. That of the effluent from primary pond is 49.2mg/l. About 88% of BOD_5 are removed in primary pond. It is assumed that about 60% of the influent BOD_5 is removed in the pit and that almost all of the carbon of the removed BOD_5 in the pit is converted to methane and carbon dioxide. Methane fermentation of the pit is well established at $16^{\circ}C$. This phenomena results from temperature stability, complete anaerobic condition, and neutral pH of the pit. Gas from the collector is almost 90% methane, less than 9% nitrogen, and less than 1% carbon dioxide. Thus a purified methane is produced, which can be used as energy source.

  • PDF

Methane Fermentation of Facultative Pond in Pond System for Ecological Treatment and Recycling of Livestock Wastewater (축산폐수 처리 및 재활용을 위한 조건성연못의 메탄발효)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.171-176
    • /
    • 2000
  • A wastewater treatment pond system was developed for treatment and recycling of dairy cattle excreta of $5\;m^1$ per day. The wastes were diluted by the water used for clearing stalls. The system was composed of three ponds in series. A submerged gas collector for the recovery of methane was installed at the bottom of secondary pond with water depth of 2.4m. This paper deals mainly with performance of methane fermentation of secondary pond which is faclutative one. The average $BOD_5$, SS, TN, and TP concentrations of influent into secondary pond were 49.1, 53.4, 48.6, and 5.3 mg/l, and those of effluent from it were 27.9, 45.7, 30.8, 3.2 mg/l respectively. Methane fermentation of 2.4-meter-deep secondary pond bottom was well established at $16^{\circ}C$ and gas garnered from the collector at that temperature was 80% methane. Literature on methane fermentation of wastewater treatment ponds shows that methane bacteria grow well around $24^{\circ}C$, the rate of daily accumulation and decomposition of sludge is approximately equal at $19^{\circ}C$, and activities of methanogenic bacteria are ceased below $14^{\circ}C$. The good methane fermentation of the pond bottom around $16^{\circ}C$, about $3^{\circ}C$ lower than $19^{\circ}C$, results from temperature stability, anaerobic condition, and neutral pH of the bottom sludge layer. It is recommended that the depth of pond water could be 2.4m. Gas from the collector during active methane fermentation was almost 83% methane, less than 17% nitrogen. Carbon dioxide was less than 1% of the gas, which indicates that carbon dioxide produced in bottom sludges was dissolved in the overlaying water column. Thus a purified methane can be collected and used as energy source. Sludge accumulation on the pond bottom for a nine month period was 1.3cm and annual sludge depth can be estimated to be 1.7cm. Design of additional pond depth of 0.3m can lead to 15 - 20 year sludge removal.

  • PDF