• Title/Summary/Keyword: daily precipitation generator

Search Result 11, Processing Time 0.027 seconds

Multi-site Daily Precipitation Generator: Application to Nakdong River Basin Precipitation Gage Network (다지점 일강수 발생모형: 낙동강유역 강수관측망에의 적용)

  • Keem, Munsung;Ahn, Jae Hyun;Shin, Hyun Suk;Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.725-740
    • /
    • 2008
  • In this study a multi-site daily precipitation generator which generates the precipitation with similar spatial correlation, and at the same time, with conserving statistical properties of the observed data is developed. The proposed generator is intended to be a tool for down-scaling the data obtained from GCMs or RCMs into local scales. The occurrences of precipitation are simultaneously modeled in multi-sites by 2-parameter first-order Markov chain using random variables of spatially correlated while temporally independent, and then, the amount of precipitation is simulated by 3-parameter mixed exponential probability density function that resolves the issue of maintaining intermittence of precipitation field. This approach is applied to the Nakdong river basin and the observed data are daily precipitation data of 19 locations. The results show that spatial correlations of precipitation series are relatively well simulated and statistical properties of observed precipitation series are simulated properly.

Stochastic precipitation modeling based on Korean historical data

  • Kim, Yongku;Kim, Hyeonjeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1309-1317
    • /
    • 2012
  • Stochastic weather generators are commonly used to simulate time series of daily weather, especially precipitation amount. Recently, a generalized linear model (GLM) has been proposed as a convenient approach to fitting these weather generators. In this paper, a stochastic weather generator is considered to model the time series of daily precipitation at Seoul in South Korea. As a covariate, global temperature is introduced to relate long-term temporal scale predictor to short-term temporal predictands. One of the limitations of stochastic weather generators is a marked tendency to underestimate the observed interannual variance of monthly, seasonal, or annual total precipitation. To reduce this phenomenon, we incorporate time series of seasonal total precipitation in the GLM weather generator as covariates. It is veri ed that the addition of these covariates does not distort the performance of the weather generator in other respects.

Multi-Site Stochastic Weather Generator for Daily Rainfall in Korea (시공간구조를 가지는 확률적 강우 모형)

  • Kwak, Minjung;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.475-485
    • /
    • 2014
  • A stochastic weather generator based on a generalized linear model (GLM) approach is a commonly used tools to simulate a time series of daily weather. In this paper, we propose a multi-site weather generator with applications to historical data in South Korea. The proposed method extends the approach of Kim et al. (2012) by considering spatial dependence in the model. To reduce this phenomenon, we also incorporate a time series of seasonal mean precipitations of South Korea in the GLM weather generator as a covariate. Spatial dependence was incorporated into the model through a latent Gaussian process. We apply the proposed model to precipitation data provided by 62 stations in Korea from 1973{2011.

Downscaling Technique of Monthly GCM Using Daily Precipitation Generator (일 강수발생모형을 이용한 월 단위 GCM의 축소기법에 관한 연구)

  • Kyoung, Min Soo;Lee, Jung Ki;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.441-452
    • /
    • 2009
  • This paper describes the evaluation technique for climate change effect on daily precipitation frequency using daily precipitation generator that can use outputs of the climate model offered by IPCC DDC. Seoul station of KMA was selected as a study site. This study developed daily precipitation generation model based on two-state markov chain model which have transition probability, scale parameter, and shape parameter of Gamma-2 distribution. Each parameters were estimated from regression analysis between mentioned parameters and monthly total precipitation. Then the regression equations were applied for computing 4 parameters equal to monthly total precipitation downscaled by K-NN to generate daily precipitation considering climate change. A2 scenario of the BCM2 model was projected based on 20c3m(20th Century climate) scenario and difference of daily rainfall frequency was added to the observed rainfall frequency. Gumbel distribution function was used as a probability density function and parameters were estimated using probability weighted moments method for frequency analysis. As a result, there is a small decrease in 2020s and rainfall frequencies of 2050s, 2080s are little bit increased.

A Modeling of Daily Temperature in Seoul using GLM Weather Generator (GLM 날씨 발생기를 이용한 서울지역 일일 기온 모형)

  • Kim, Hyeonjeong;Do, Hae Young;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.413-420
    • /
    • 2013
  • Stochastic weather generator is a commonly used tool to simulate daily weather time series. Recently, a generalized linear model(GLM) has been proposed as a convenient approach to tting these weather generators. In the present paper, a stochastic weather generator is considered to model the time series of daily temperatures for Seoul South Korea. As a covariate, precipitation occurrence is introduced to a relate short-term predictor to short-term predictands. One of the limitations of stochastic weather generators is a marked tendency to underestimate the observed interannual variance of monthly, seasonal, or annual total precipitation. To reduce this phenomenon, we incorporate a time series of seasonal mean temperatures in the GLM weather generator as a covariate.

Stochastic Daily Weather Generations for Ungaged Stations (기상자료 미계측 지역의 추계학적 기상발생모형)

  • 강문성;박승우;진영민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.57-67
    • /
    • 1998
  • A stochastic weather generator which simulate daily precipitation, maximum and minimum daily temperature, relative humidity was developed. The model parameters were estimated using stochastic characteristics analysis of historical data of 71 weather stations. Spatial variations of the parameters for the country were also analyzed. Model parameters of ungauged Sites were determined from parameters of adjacent weather stations using inverse distance method. The model was verified on Suwon and Ulsan weather stations and showed good agreement between simulated and observed data.

  • PDF

Ensemble Daily Streamflow Forecast Using Two-step Daily Precipitation Interpolation (일강우 내삽을 이용한 일유량 시뮬레이션 및 앙상블 유량 발생)

  • Hwang, Yeon-Sang;Heo, Jun-Haeng;Jung, Young-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • Input uncertainty is one of the major sources of uncertainty in hydrologic modeling. In this paper, first, three alternate rainfall inputs generated by different interpolation schemes were used to see the impact on a distributed watershed model. Later, the residuals of precipitation interpolations were tested as a source of ensemble streamflow generation in two river basins in the U.S. Using the Monte Carlo parameter search, the relationship between input and parameter uncertainty was also categorized to see sensitivity of the parameters to input differences. This analysis is useful not only to find the parameters that need more attention but also to transfer parameters calibrated for station measurement to the simulation using different inputs such as downscaled data from weather generator outputs. Input ensembles that preserves local statistical characteristics are used to generate streamflow ensembles hindcast, and showed that the ensemble sets are capturing the observed steamflow properly. This procedure is especially important to consider input uncertainties in the simulation of streamflow forecast.

Application of Rainwater Harvesting System Reliability Model Based on Non-parametric Stochastic Daily Rainfall Generator to Haundae District of Busan (비모수적 추계학적 일 강우 발생기 기반의 빗물이용시설 신뢰도 평가모형의 부산광역시 해운대 신시가지 적용)

  • Choi, ChiHyun;Park, MooJong;Baek, ChunWoo;Kim, SangDan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.634-645
    • /
    • 2011
  • A newly developed rainwater harvesting (RWH) system reliability model is evaluated for roof area of buildings in Haeundae District of Busan. RWH system is used to supply water for toilet flushing, back garden irrigation, and air cooling. This model is portable because it is based on a non-parametric precipitation generation algorithm using a markov chain. Precipitation occurrence is simulated using transition probabilities derived for each day of the year based on the historical probability of wet and dry day state changes. Precipitation amounts are selected from a matrix of historical values within a moving 30 day window that is centered on the target day. Then, the reliability of RWH system is determined for catchment area and tank volume ranges using synthetic precipitation data. As a result, the synthetic rainfall data well reproduced the characteristics of precipitation in Busan. Also the reliabilities of RWH system for each of demands were computed to high values. Furthermore, for study area using the RWH system, reduction efficiencies for rooftop runoff inputs to the sewer system and potable water demand are evaluated for 23%, 53%, respectively.

Quantification of future climate uncertainty over South Korea using eather generator and GCM

  • Tanveer, Muhammad Ejaz;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.154-154
    • /
    • 2018
  • To interpret the climate projections for the future as well as present, recognition of the consequences of the climate internal variability and quantification its uncertainty play a vital role. The Korean Peninsula belongs to the Far East Asian Monsoon region and its rainfall characteristics are very complex from time and space perspective. Its internal variability is expected to be large, but this variability has not been completely investigated to date especially using models of high temporal resolutions. Due to coarse spatial and temporal resolutions of General Circulation Models (GCM) projections, several studies adopted dynamic and statistical downscaling approaches to infer meterological forcing from climate change projections at local spatial scales and fine temporal resolutions. In this study, stochastic downscaling methodology was adopted to downscale daily GCM resolutions to hourly time scale using an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). After extracting factors of change from the GCM realizations, these were applied to the climatic statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series which can be considered to be representative of future climate conditions. Further, 30 ensemble members of hourly precipitation were generated for each selected station to quantify uncertainty. Spatial map was generated to visualize as separated zones formed through K-means cluster algorithm which region is more inconsistent as compared to the climatological norm or in which region the probability of occurrence of the extremes event is high. The results showed that the stations located near the coastal regions are more uncertain as compared to inland regions. Such information will be ultimately helpful for planning future adaptation and mitigation measures against extreme events.

  • PDF

Future Weather Generation with Spatio-Temporal Correlation for the Four Major River Basins in South Korea (시공간 상관성을 고려한 일기산출기 모형을 이용한 4대강 유역별 미래 일기 변수 산출)

  • Lee, Dong-Hwan;Lee, Jae-Yong;Oh, Hee-Seok;Lee, Young-Jo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.351-362
    • /
    • 2012
  • Weather generators are statistical tools to produce synthetic sequences of daily weather variables. We propose the multisite weather generators with a spatio-temporal correlation based on hierarchical generalized linear models. We develop a computational algorithm to produce future weather variables that use three different types of green-house gases scenarios. We apply the proposed method to a daily time series of precipitation and average temperature for South Korea.