• 제목/요약/키워드: daily and seasonal change

검색결과 95건 처리시간 0.026초

Characteristics of Southern Ocean Sea Ice Distribution Modeled Using Cavitating Fluid Rheology and Climatological Atmospheric Data

  • Yih, Hyung-Moh;Mechoso, Carlos R.
    • Journal of the korean society of oceanography
    • /
    • 제34권2호
    • /
    • pp.59-72
    • /
    • 1999
  • Cavitating fluid sea ice model of Plato and Hibler (1992) is applied to the Southern Ocean with an idealized, circular Antarctica. Using climatological atmospheric forcing fields averaged in the zonal direction, we show that oceanic heat flux and ice velocity have major effects on the seasonal change of ice edge, as other studies showed. In our model results, there appears a zone of free drift that contains a polynya zone. Thermodynamic forcing functions make dominant contributions to daily increments of ice thickness and compactness, except the zones of ice edge and polynya. The dominant contributions are also shown in distributions of the temperature on ice surface and several to terms in surface heat balance equation, and are also confirmed by those obtained from the thermodynamic-only model with the different locations of ice edge.

  • PDF

소아환자발생과 거주지역 환경, 계절 및 기상과의 관계 (Occurrence of Pediatric Diseases in Relation to the Environment, Seasons and Atmospheric Phenomena(weather))

  • 윤덕진;박경숙;황한기;안치옥;윤도광;권영조;박동철;윤용황;남정모
    • Journal of Preventive Medicine and Public Health
    • /
    • 제22권2호
    • /
    • pp.283-289
    • /
    • 1989
  • This study was conducted to investigate the association of the occurrence of pediatric diseases with environmental, seasonal and atmospheric factors. The data were collected at 5 pediatric clinics in Seoul and the Department of Pediatrics of Yongin Severance Hospital from May 1986 to April 1987. The results were as follows: 1. Vacation periods had a great influence upon the occurrence of pediatric diseases. 2. The majority of pediatric diseases occurred mainly in spring and autumn, not in summer and winter. 3. The higher the average relative humidity was, the less diseases occurred : and the higher the maximum change of daily temperature, the more diseases occurred. 4. In summer, the pattern of diseases varied along with the environmental factors(eg., toilet).

  • PDF

집중호우로 인한 철도재해 유형 분석($2002{\sim}2007$년도) (Analysis on disasters pattern of the railroad caused by heavy rainfall ($2002{\sim}2007$))

  • 최찬용;이진욱;신민호;이석영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.88-92
    • /
    • 2008
  • For more and more citizen safety and national security due to an unusual weather change and massive disaster, the atmospheric is one of the most major factors. According the Weather Service data that the rainfall intensity has been on the rise due to heavy rainfall in korea, and then daily precipitation expects to decline relative it. The characteristic climate of the domestic has a heavy rainfall due to 65% of mountain area in country and a regional declination as like seasonal effect, yearly. etc. In this paper, it was analyzed a disaster pattern and restoration cost based on occurred heavy rainfall from 2002 to 2007.

  • PDF

대기질 예측을 위한 기후·대기환경 통합모델링시스템 (ICAMS)의 기온 및 강수량 예측 능력 평가 (Evaluation of Temperature and Precipitation on Integrated Climate and Air Quality Modeling System (ICAMS) for Air Quality Prediction)

  • 최진영;김승연;홍성철;이재범;송창근;이현주;이석조
    • 한국대기환경학회지
    • /
    • 제28권6호
    • /
    • pp.615-631
    • /
    • 2012
  • This study provides an evaluation for capability of Integrated Climate and Air quality Modeling System (ICAMS) on future regional scale climate projection. Temperature and precipitation are compared between ground-level observation data and results of regional models (MM5) for the past 30 years over the Korean peninsula. The ICAMS successfully simulates the local-scale spatial/seasonal variation of the temperature and precipitation. The probability distribution of simulated daily mean and minimum temperature agree well with the observed patterns and trends, although mean temperature shows a little cold bias about $1^{\circ}C$ compared to observations. It seems that a systematic cold bias is mostly due to an underestimation of maximum temperature. In the case of precipitation, the rainfall in winter and light rainfall are remarkably simulated well, but summer precipitation is underestimated in the heavy rainfall phenomena of exceeding 20 mm/day. The ICAMS shows a tendency to overestimate the number of washout days about 7%. Those results of this study indicate that the performance of ICAMS is reasonable regarding to air quality predication over the Korean peninsula.

기후변화에 따른 유역의 수문요소 및 수자원 영향평가 (Impact Assessment of Climate Change on Hydrologic Components and Water Resources in Watershed)

  • 권병식;김형수;서병하;김남원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.143-148
    • /
    • 2005
  • The main purpose of this study is to suggest and evaluate an operational method for assessing the potential impact of climate change on hydrologic components and water resources of regional scale river basins. The method, which uses large scale climate change information provided by a state of the art general circulation model(GCM) comprises a statistical downscaling approach and a spatially distributed hydrological model applied to a river basin located in Korea. First, we construct global climate change scenarios using the YONU GCM control run and transient experiments, then transform the YONU GCM grid-box predictions with coarse resolution of climate change into the site-specific values by statistical downscaling techniques. The values are used to modify the parameters of the stochastic weather generator model for the simulation of the site-specific daily weather time series. The weather series fed into a semi-distributed hydrological model called SLURP to simulate the streamflows associated with other water resources for the condition of $2CO_2$. This approach is applied to the Yongdam dam basin in southern part of Korea. The results show that under the condition of $2CO_2$, about $7.6\% of annual mean streamflow is reduced when it is compared with the observed one. And while Seasonal streamflows in the winter and autumn are increased, a streamflow in the summer is decreased. However, the seasonality of the simulated series is similar to the observed pattern and the analysis of the duration cure shows the mean of averaged low flow is increased while the averaged wet and normal flow are decreased for the climate change.

  • PDF

Transient Groundwater Flow Modeling in Coastal Aquifer

  • 이은희;현윤정;이강근;박병원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.293-297
    • /
    • 2006
  • Submarine groundwater discharge (SGD) and the interface between seawater and freshwater in an unconfined coastal aquifer was evaluated by numerical modeling. A two-dimensional vertical cross section of the aquifer was constructed. Coupled flow and salinity transport modeling were peformed by using a numerical code FEFLOW In this study, we investigated the changes in groundwater flow and salinity transport in coastal aquifer with hydraulic condition such as the magnitude of recharge flux, hydraulic conductivity. Especially, transient simulation considering tidal effect and seasonal change of recharge rate was simulated to compare the difference between quasi-steady state and transient state. Results show that SGD flux is in proportion to the recharge rate and hydraulic conductivity, and the interface between the seawater and the freshwater shows somewhat retreat toward the seaside as recharge flux increases. Considered tidal effect, SGD flux and flow directions are affected by continuous change of the sea level and the interface shows more dispersed pattern affected by velocity variation. The cases which represent variable daily recharge rate instead of annual average value also shows remarkably different result from the quasi-steady case, implying the importance of transient state simulation.

  • PDF

Visibility Impairment by Atmospheric Fine Particles in an Urban Area

  • Kim, Young J.;Kim, Kyung W.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제19권E3호
    • /
    • pp.99-120
    • /
    • 2003
  • Visibility impairment in an urban area is mainly caused by airborne fine particulate matters. Visibility in a clean air environment is more sensitive to the change of PM$_{2.5}$ particle concentrations. However, a proportionally larger reduction in fine particle concentration is needed to achieve a small increment of visibility improvement in polluted areas. Continuous optical monitoring of atmospheric visibility and extensive aerosol measurements have been made in the urban atmosphere of Kwangju, Korea. The mean for fine particulate mass from 1999 to 2002 at Kwangju was measured to be 23.6$\pm$20.3 $\mu\textrm{g}$/㎥. The daily average seasonal visual range was measured to be 13.1, 9.2, 11.0, and 13.9 km in spring, summer, fall, and winter, respectively. The mean light extinction budgets by sulfate, nitrate, organic carbon, and elemental carbon aerosol were observed to be 27, 14, 22, and 12%, respectively. It is highly recommended that a new visibility standard and/or a fine particle standard be established in order to protect the health and welfare of general public. Much more work needs to be done in visibility studies, including long-term monitoring of visibility, improvement of visibility models, and formulating integrated strategies for managing fine particles to mitigate the visibility impairment and climate change.e.

Changes in the Earth's Spin Rotation due to the Atmospheric Effects and Reduction in Glaciers

  • Na, Sung-Ho;Cho, Jungho;Kim, Tu-Hwan;Seo, Kiweon;Youm, Kookhyoun;Yoo, Sung-Moon;Choi, Byungkyu;Yoon, Hasu
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권4호
    • /
    • pp.295-304
    • /
    • 2016
  • The atmosphere strongly affects the Earth's spin rotation in wide range of timescale from daily to annual. Its dominant role in the seasonal perturbations of both the pole position and spinning rate of the Earth is once again confirmed by a comparison of two recent data sets; i) the Earth orientation parameter and ii) the global atmospheric state. The atmospheric semi-diurnal tide has been known to be a source of the Earth's spin acceleration, and its magnitude is re-estimated by using an enhanced formulation and an up-dated empirical atmospheric S2 tide model. During the last twenty years, an unusual eastward drift of the Earth's pole has been observed. The change in the Earth's inertia tensor due to glacier mass redistribution is directly assessed, and the recent eastward movement of the pole is ascribed to this change. Furthermore, the associated changes in the length of day and UT1 are estimated.

기후변화의 위험헷지와 기온파생상품

  • 손동희;임형준;전용일
    • 자원ㆍ환경경제연구
    • /
    • 제21권3호
    • /
    • pp.465-491
    • /
    • 2012
  • 지구온난화에 대처하기 위한 한 가지 방안으로, 최근 녹색성장과 녹색금융이 활성화되고 있다. 특히, 금융시장을 통하여 기온상승에 대한 적응을 가능케 하는 기온파생상품은 녹색금융의 능동적 형태로서 주목받고 있다. 본 논문에서는 서울의 일별평균기온에 대한 특성을 파악하여 계절성, 주기성 등을 포함한 일별평균기온 예측모형을 설정한 후, 기온옵션의 일종인 CDD 옵션가격과 HDD 옵션가격을 시뮬레이션을 통해 분석한다. 오차항의 주기성 모형여부에 따라 구분하여 분석을 진행한 결과, CDD 콜옵션과 HDD 풋옵션의 위험중립가치가 시간이 지남에 따라 상승한 것으로 나타나 기온상승의 추세를 금융시장에서 정량적으로 파악할 수 있는 것으로 나타났다. 기존 모형과는 달리, Vasicek 모형에 기반한 CDD 콜옵션가치분석시, 특정 행사가격 이상에서 옵션의 가치가 존재하여, 기온상승위험회피를 위한 금융상품으로서 활용이 가능하다.

  • PDF

GCM 및 상세화 기법 선정을 고려한 충주댐 유입량 기후변화 영향 평가 (Future Climate Change Impact Assessment of Chungju Dam Inflow Considering Selection of GCMs and Downscaling Technique)

  • 김철겸;박지훈;조재필
    • 한국기후변화학회지
    • /
    • 제9권1호
    • /
    • pp.47-58
    • /
    • 2018
  • In this study, we evaluated the uncertainty in the process of selecting GCM and downscaling method for assessing the impact of climate change, and influence of user-centered climate change information on reproducibility of Chungju Dam inflow was analyzed. First, we selected the top 16 GCMs through the evaluation of spatio-temporal reproducibility of 29 raw GCMs using 30-year average of 10-day precipitation without any bias-correction. The climate extreme indices including annual total precipitation and annual maximum 1-day precipitation were selected as the relevant indices to the dam inflow. The Simple Quantile Mapping (SQM) downscaling method was selected through the evaluation of reproducibility of selected indices and spatial correlation among weather stations. SWAT simulation results for the past 30 years period by considering limitations in weather input showed the satisfactory results with monthly model efficiency of 0.92. The error in average dam inflow according to selection of GCMs and downscaling method showed the bests result when 16 GCMs selected raw GCM analysi were used. It was found that selection of downscaling method rather than selection of GCM is more is important in overall uncertainties. The average inflow for the future period increased in all RCP scenarios as time goes on from near-future to far-future periods. Also, it was predicted that the inflow volume will be higher in the RCP 8.5 scenario than in the RCP 4.5 scenario in all future periods. Maximum daily inflow, which is important for flood control, showed a high changing rate more than twice as much as the average inflow amount. It is also important to understand the seasonal fluctuation of the inflow for the dam management purpose. Both average inflow and maximum inflow showed a tendency to increase mainly in July and August during near-future period while average and maximum inflows increased through the whole period of months in both mid-future and far-future periods.