• Title/Summary/Keyword: dGPS

Search Result 644, Processing Time 0.03 seconds

Stability Analysis of DMC's Block Geometry (DMC 카메라의 블록기하 안정성 분석)

  • Lee, Jae One;Lee, Dong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.771-779
    • /
    • 2009
  • Digital topographical maps used for GIS DB are mainly produced by the traditional way of analogue aerial photogrammetry. Therefore, analogue photos are only available for digital mapping after preprocessing such as film developing, printing and scanning. However, digital aerial camera is able to get digital image directly without preprocessing and thus the performance and efficiency of photogrammetry are extremely increased. This study aims to investigate geometric stability of digital aerial frame camera DMC (Digital Modular Camera). In order to verify the geometric stability of digital aerial camera DMC, some different block conditions with and without cross strips, GPS/INS data and variation of GCPs are introduced in the block adjustment. The accuracy results of every block condition were compared each other by computation of residuals of exterior orientation (EO) parameters. Results of study shows that the geometric stability of the block adjustment with cross strips is increased about 30% against without cross strips. The accuracy of EO parameters of block adjustment with cross strips is also increased about 2cm for X-coordinate, 3cm for Y-coordinate, 3cm for Z-coordinate, and 6" for omega, 4" for phi and 3" for kappa.

Diurnal Effect Compensation Algorithm for a Backup and Substitute Navigation System of GPS (GPS 백업 및 대체 항법을 위한 지상파 신호의 일변효과 보상 방안)

  • Lee, Young-Kyu;Lee, Chang-Bok;Yang, Sung-Hoon;Lee, Jong-Koo;Kong, Hyun-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1225-1232
    • /
    • 2008
  • In this paper, we describe a compensation method of diurnal effect which is one of the factors giving large effect on the performance when using ground-wave signals like Loran-C for a backup and substitute navigation system of global satellite navigation system such as GPS, and currently many researches of the topics are doing in USA and in Europe. In order to compensate diurnal effect, we find periodic frequency components by using the Least Square Spectral Analysis (LSSA) method at first and then compensate the effect by subtracting the estimated compensation signal, obtained by using the estimated amplitude and phase of the individual frequency component, from the original signal. In this paper, we propose a simple compensation algorithm and analysis the performance through simulations. From the results, it is observed that the amplitude and phase can be estimated with under 5 % and 0.17 % in a somewhat poor receiving situation with 0 dB Signal to Noise Ratio (SNR). Also, we analyze the obtainable performance improvement after compensation by using the measured Loran-C data. From the results, it is observed that we can get about 22 % performance improvement when a moving average with 5 minutes interval is employed.

Predict DGPS Algorithm using Machine Learning (기계학습을 통한 예측 DGPS 항법 알고리즘)

  • Kim, HongPyo;Jang, JinHyeok;Koo, SangHoon;Ahn, Jongsun;Heo, Moon-Beom;Sung, Sangkyung;Lee, Young Jae
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.602-609
    • /
    • 2018
  • Differential GPS (DGPS) is known as a positioning method using pseudo range correction (PRC) which is communicating between a refence receiver and moving receivers. In real world, a moving receiver loses communication with the reference receiver, resulting in loss of PRC real-time communication. In this paper, we assume that the transmission of the pseudo range correction isinterrupted in the middle of real-time positioning situations, in which calibration information is received in the DGPS method. Under the disconnected communication, we propose 'predict DGPS' that real-time virtual PRC model which is modeled by a machine learning algorithm with previously acquired PRC data from a reference receiver. To verify predict DGPS method, we compared and analyzed positioning solutions acquired from real PRC and the virtual PRC. In addition, we show that positioning using the DGPS prediction method on a real road can provide an improved positioning solution assuming a scenario in which PRC communication was cut off.

Estimation of channel morphology using RGB orthomosaic images from drone - focusing on the Naesung stream - (드론 RGB 정사영상 기반 하도 지형 공간 추정 방법 - 내성천 중심으로 -)

  • Woo-Chul, KANG;Kyng-Su, LEE;Eun-Kyung, JANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.136-150
    • /
    • 2022
  • In this study, a comparative review was conducted on how to use RGB images to obtain river topographic information, which is one of the most essential data for eco-friendly river management and flood level analysis. In terms of the topographic information of river zone, to obtain the topographic information of flow section is one of the difficult topic, therefore, this study focused on estimating the river topographic information of flow section through RGB images. For this study, the river topography surveying was directly conducted using ADCP and RTK-GPS, and at the same time, and orthomosiac image were created using high-resolution images obtained by drone photography. And then, the existing developed regression equations were applied to the result of channel topography surveying by ADCP and the band values of the RGB images, and the channel bathymetry in the study area was estimated using the regression equation that showed the best predictability. In addition, CCHE2D flow modeling was simulated to perform comparative verification of the topographical informations. The modeling result with the image-based topographical information provided better water depth and current velocity simulation results, when it compared to the directly measured topographical information for which measurement of the sub-section was not performed. It is concluded that river topographic information could be obtained from RGB images, and if additional research was conducted, it could be used as a method of obtaining efficient river topographic information for river management.

Development of Anti-disaster System for Natural Gas Governor Station Using Wire and/or Wireless Communication ($\cdot$무선 데이터 통신을 이용한 천연가스 정압소의 안전방재 시스템 개발)

  • Yoo Hui Ryong;Park Dae Jin;Koo Sung Ja;Park Seoung Soo;Rho Yong Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.17-23
    • /
    • 1999
  • The wire and/or wireless data communication system for anti-disaster system of natural gas governor station was developed. In oder to prevent accidents of governor station, the operator was replaced by RTU(Remote Terminal Unit) which gather and transmit safety situation of governor station. The database and MMI(Man Machine Interface) were also developed to analyze the situation of governor station. The data communication between server and RTU was designed to switch automatically from wire to wireless communication and vice versa when one of them failed communication. We also have developed the patrol car management system which was applied GPS(Global Position System)/GIS(Geometric Information System), and the earthquake detection/transmission system which was adopted three dimension acceleration sensor. When a earthquake may occur, the earthquake detection/transmission system monitors data such as PGA(Peak Ground Acceleration), Sl(Spectrum Intensity) and orders the emergency shutoff valve close immediately.

  • PDF

3-D Gravity Terrain Inversion for High Resolution Gravity Survey (고정밀 중력 탐사를 위한 3차원 중력 지형 역산 기법)

  • Park, Gye-Soon;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.691-697
    • /
    • 2005
  • Recently, the development of accurate gravity-meter and GPS make it possible to obtain high resolution gravity data. Though gravity data interpretation like modeling and inversion has significantly improved, gravity data processing itself has improved very little. Conventional gravity data processing removes gravity effects due to mass and height difference between base and measurement level. But, it would be a biased density model when some or whole part of anomalous bodies exist above the base level. We attempted to make a multiquadric surface of the survey area from topography with DEM (Digital Elevation Map) data. Then we constituted rectangular blocks which reflect real topography of the survey area by the multiquadric surface. Thus, we were able to carry out 3-D inversions which include information of topography. We named this technique, 3-D Gravity Terrain Inversion (3DGTI). The model test showed that the inversion model from 3DGTI made better results than conventional methods. Furthermore, the 3-dimensional model from the 3DGTI method could maintain topography and as a result, it showed more realistic geologic model. This method was also applied on real field data in Masan-Changwon area. Granitic intrusion is an important geologic characteristic in this area. This method showed more critical geological boundaries than other conventional methods. Therefore, we concluded that in the case of various rocks and rugged terrain, this new method will make better model than convention ones.

A Study on the Evaluation of Airborne Lidar Height Accuracy for Application of 3D Cadastral (3차원지적 적용을 위한 항공라이다의 수직 정확도 평가에 관한 연구)

  • Choi, Byoung Gil;Na, Young Woo;Lee, Kyung Sub;Lee, Jung Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.2
    • /
    • pp.33-40
    • /
    • 2014
  • At present, Cadastral map of 2 dimensional is in the stream of changing it to 3 dimensional type supported by GPS and laser techniques. In addition, this steam can be explained at the same time with improvement of equipment of storing much information, support of equipment for imaginative 3D spatial information, and support of equipment of expressing land in 3D Cadastral. This study suggest to apply airborne lidar survey technique on cadastral map to acquire comparably and quickly detailed height of ground. For doing this, this study checked out credibility regarding accuracy of airborne lider survey. After choosing research area, this study has done the airborne lidar survey and acquire the result after surveying Cadastral Comparison Point to check out the accuracy of acquired results. In addition, this study check out the result of Cadastral Comparison Point and airborne lidar survey applied by paired sample t-test based on actual results. The result is that test statistics is 0.322 which is 5 % similar level and null hypothesis cannot be rejected, so this study found out that result of both survey ways are the same. Therefore, the result of airborne lidar survey can be utilized to build up 3D Cadastral information hereafter.

The Development for KASS Reference Station Site (KASS 기준국 사이트 구축)

  • Cho, Sunglyong;Jang, Hyunjin;Jeong, Hwanho;Lee, Byungseok;Nam, Giwook
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.273-279
    • /
    • 2020
  • In the Korea's SBAS(KASS), reference site is an important infrastructure facility for the collecting and monitoring GPS/GEO signals. The SBAS reference station has an clear requirements than other regular monitoring stations. It requires constant maintenance during the system operation. The development for KRS site should be prepared for site survey, site construction, antenna geodetic survey, equipment installation and operation. Site survey is initially performed as an important step to predict site availability and system performance. The operation center must provide the reference site, equipment room, and appurtenant to satisfy the site requirements. The position of antennas is very important information, and accuracy must be secured through the geodetic survey. Measurement collected at the from precise antenna are provided to the KASS processing station. The position of antenna should be maintained through continuous position checks and updates during the operation. When the development of the KRS site is completed, it performs tasks for installing and operating the KRS equipment. In this paper, we presented the procedures and some results for the development of the 7 KRS sites.

Comparison of Extended Kalman Filter and Constraint Propagation Technique to Localize Multiple Mobile Robots (다중 이동 로봇의 위치 추정을 위한 확장 칼만 필터와 제약 만족 기법의 성능 비교)

  • Jo, Kyaung-Hwan;Lee, Hang-Ki;Lee, Ji-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.323-324
    • /
    • 2008
  • In this paper, we present performance comparison of two methods to localize multiple robots. One is extended Kalman filter and the other is constraint propagation technique. Extended Kalman filter is conventional probabilistic method which gives the sub-optimal estimation rather than guarantee any boundary for true position of robot. In case of constraint propagation, it can give a boundary containing true robot position value. Especially, we deal with cooperative localization problem in outdoor environment for multiple robots equipped with GPS, gyro meter, wheel encoder. In simulation results, we present strength and weakness for localization methods based on extend Kalman filter and constraint propagation technique.

  • PDF

A Study for Construction Environment Pre-analysis by Integration of 3D Scanning and USN (3D 스캐닝 데이터와 USN의 통합에 위한 건설환경 사전분석 연구)

  • Yeon, Sangho;Lee, Youngwook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.149-150
    • /
    • 2011
  • 3차원 건설환경의 디지털기반의 가시화는 도시계획 및 통신계획, 건설, 건축, 입체적인 도시공간정보시스템 구현, 안전 및 방재 등에서 많은 필요와 그 중요성이 크게 부각되고 있다. 건설현장의 환경정보의 사전분석에 의하여 USN의 구성과 실시간 정보취득의 장점을 활용하여 기존의 항공사진과 DEM의 매칭에 의한 3D지형공간에 온도, 습도, 조도, 적외선량, GPS위치, 이산화탄소량 등의 환경정보를 실시간으로 원하는 장소와 시간에서 획득하여 이를 모바일 스마트폰으로 연결함으로서 새로운 건설환경정보를 사전에 분석할 수 있도록 하였다.

  • PDF