• Title/Summary/Keyword: d-q method

Search Result 561, Processing Time 0.031 seconds

Controller Design of Utility-connected Single-phase Inverter using d-q Theory (d-q이론을 이용한 개통 연계형 단상 인버터 제어기 설계기법)

  • Park, Chang-Joo;Kim, Chang-Hyun;Kim, Myung-Chul;Choi, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1247-1249
    • /
    • 2003
  • Despite many advantages, d-q theory was available only for three phase system. But recently, some papers proposed the application methods of d-a theory or similar theories for single phase systems. This paper presents the control method of the utility-connected single-phase inverter using d-q theory. The suggested method gives single-phase system instantaneous controllability and also makes the realization of APF(Active Power Filter) without DFT operation and PFC(Power Factor Controller) possible. This paper deals with utility-connected single phase inverter with PFC function. The controller was verified by simulation tool.

  • PDF

The direct digital frequency synthesizer of QD-ROM reduction using the differential quantization (차동 양자화를 사용한 QD-ROM 압축 방식의 직접 디지털 주파수 합성기)

  • Kim, Chong-Il;Lim, So-Young;Lee, Ho-Jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.192-198
    • /
    • 2007
  • In this paper, a new method to reduce the size of ROM in the direct digital frequency synthesizer(DDFS) is proposed. The new ROM compression method can reduce the ROM size by using the two ROM. The quantized value of sine is stored by the quantized-ROM(Q-ROM) and the differential ROM(D-ROM). To reduce the ROM size, we use the differential quantization technique with this two ROM. First, we quantize the quarter sine wave with the $2^L$ address and store the quantized value at the Q-ROM. Second, after the $2^L$ address are equally divided into $2^M$ sampling intervals, the sampling value is quantized. And the D-ROM store only the difference between this quantized value and the Q-ROM. So the total size of the ROM in the proposed DDFS is significantly reduced compared to the original ROM. The ROM compression ratio of 67.5% is achieved by this method. Also, the power consumption is affected mostly by this ROM reduction.

  • PDF

2-D Forward Modeling on an Explosion Data in Korea (한반도의 폭파자료에 대한 2-D 수치 모델링 연구)

  • Kang, Ik-Bum;Cho, Kwang-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.137-139
    • /
    • 2007
  • To enhance capability on discerning local and regional seismic phases, such as, Pn, Pg, Sn, Rg, etc, within the crust, 2-D numerical forward modeling will be applied to the data obtained from local seismic stations by simulating almost all waves including not only body wave but also surface wave generated without having to explicitly include them under consideration of Q factor. In this study, after getting rid of instrumental response by deconvolution, pseudo-spectral method instead of relying on typical numerical methods, such as, FEM(Finite Element Method) and FDM(Finite Difference Method), will be implemented for 2-D numerical forward modeling by considering velocities of P-wave and S-wave, density, and Q factors. Ultimately, the Power of reaching the enhanced capability on discerning local and regional seismic phases will make it easier for us to identify the seismic source, whether it is originated from man-made explosion or pure earthquake.

  • PDF

A Study of Design for Interior Permanent Magnet Synchronous Motor by using d-q Axis Equivalent Circuit Method (d-q축 등가회로 해석기법을 이용한 180 W급 IPMSM 설계에 관한 연구)

  • Kim, Young-Kyoun
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.2
    • /
    • pp.54-62
    • /
    • 2017
  • This paper presents a design of the Interior Permanent Magnet Synchronous Motor (IPMSM). an initial design process is accomplished by using the parametric design. In the design process, motor characteristics of parameters is computed by the d-q axis equivalent circuit model. Then, an optimal design process is accomplished by combination the experimental design and the response surface method. Finally, the design and analysis results are verified with experimental results.

Static analysis of shear-deformable shells of revolution via G.D.Q. method

  • Artioli, Edoardo;Viola, Erasmo
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.459-475
    • /
    • 2005
  • This paper deals with a novel application of the Generalized Differential Quadrature (G.D.Q.) method to the linear elastic static analysis of isotropic rotational shells. The governing equations of equilibrium, in terms of stress resultants and couples, are those from Reissner-Mindlin shear deformation shell theory. These equations, written in terms of internal-resultants circular harmonic amplitudes, are first put into generalized displacements form, by use of the strain-displacements relationships and the constitutive equations. The resulting systems are solved by means of the G.D.Q. technique with favourable precision, leading to accurate stress patterns.

Characteristic Analysis of Single Phase Line-start Permanent Magnet Synchronous Motor Considering Circuit Parameters (단상 직립 기동형 영구자석 동기기의 회로정수에 따른 특성 해석)

  • 강규홍;홍정표
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.262-270
    • /
    • 2003
  • In this paper, the characteristics of single-phase line-start permanent magnet synchronous motor driven by constant voltage are analyzed on d-q axis vector diagram and compared with that of current controlled motor. The coupled method of symmetrical coordinates and d-q axis voltage equation are applied to the analysis method like the analysis of single-phase induction motor. From the result of the analysis, it is seen that motors driven by constant voltage source have effects on not only the amplitude of current and torque but also current and current phase angle, so overall characteristics such as power factor and load angle are affected by circuit parameters. For precise analysis and design of single-phase line-start synchronous motor, its characteristics should be analyzed on d-q axis vector plan in consideration of the variation of circuit parameters.

A Study on AC Machine Modeling using Complex Vector and dq Transformation (복소 벡터와 dq 변환을 이용한 교류기 모델링에 관한 연구)

  • Hong, Sun-Ki;Park, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1601-1605
    • /
    • 2012
  • Three-phase voltage and current is applied to the three-phase alternating current motors which are commonly used in industry. Three phase variables of a, b, c are converted into d, q, 0 axis and the AC machines are modeled and analyzed. Basically the coordinate transformation or d-q transformation is used for convenience, a few steps are needed to analyze the motor performances - separating d and q components, establishing each equivalent circuit, and solving the differential equations of the circuits. In this study, a modeling technique of induction motor using complex vector is proposed and it can explain the induction motor physically. This method does not need the separating process of d and q components. With this technique, the model becomes simple, is easy to understand in physical, and can get the same results with those from the other models. These simulation results of the proposed model are compared with them for the conformation of the proposed method.

Development of Torque Monitoring System of Induction Spindle Motor using Graphic-programming (Graphic-programming 을 이용한 주축용 유도전동기의 토크감시시스템 개발)

  • Lee, In-Hwan;Kwon, Won-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.184-193
    • /
    • 2001
  • In vector control technique, stator currents of an induction motor are transformed to equivalent d-q currents in a reference frame consist of d and q axis, each of which is coincide with flux and torque direction respectively. Since the current in q-axis is related to the torque in a synchronously rotating frame, torque is estimated as a function of q-axis current and flux. In this paper, a method to estimate torque of an induction motor based on the measurement of 3-phase currents and rotating velocity of a rotor is presented. Graphic-programming is used to measure signals, to estimate the torque and to show the result in the form of user friendly graph in window environment. To stabilize the fluctuation of estimated torque caused from the small measurement error of the rotor velocity, the stator current is reconstructed in a program based on measured signals. The experimental results executed under the velocity of 500 rpm, 1500 rpm without load and 1500 rpm with load show that the proposed method estimates the torque very well.

  • PDF

Analysis of d-q axis Inductance and Characteristic to Notch Type IPMSM (Notch Type IPMSM의 d-q축 인덕턴스 및 특성해석)

  • Kim, Hee-Woon;Kang, Gyu-Hong;Hur, Jin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.893_894
    • /
    • 2009
  • This paper study on the notch effect for d-q axis inductance of interior type permanent magnet (IPM) motor. The variations of d-q axis inductance are analyzed by finite element method (FEM). Applying the notch for cogging torque minimization and maximization of reluctance torque is confirmed to be improve the torque characteristics. Also, speed characteristics is analyzed according to the load current

  • PDF

Design of Magnetic Circuit of Line-start Permanent Magnet Synchronous Motor to Develop the Characteristics at the Steady State (정상상태 특성 개선을 위한 단상 영구자석형 동기기의 자기회로 설계)

  • Oh, Young-Jin;Nam, Hyuk;Jung, Seung-Kyu;Hong, Jung-Pyo;Jung, Tae-Uk;Baek, Seung-Myun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.254-261
    • /
    • 2003
  • This study investigates magnetic circuit design of the Single-phase Line-start Permanent Magnet Synchronous Motor (LSPM) to develop the characteristics in steady state. In this paper, the saliency ratio, that is the ratio of q-axial inductance to d-axial inductance, and the inductance difference between q-axial inductance and d-axial inductance are increased. Design factor is selected permanent magnet position and rotor diameter. The analysis method of the synchronous motor on d-/q- axis coordinates is used for the positive component and the equivalent circuit of the induction motor is applied for the negative component analysis. Back-emf and d-q- axial inductance is analyzed by using 2 dimensional Finite Element Method (FEM). Characteristic analysis results with variation of design factor are reflected magnetic circuit design of LSPM. The characteristics of design model are compared with the characteristic of initial model.