• Title/Summary/Keyword: d-q axis inductance

Search Result 43, Processing Time 0.016 seconds

Design and Analysis of Characteristics of Interior Permanent Magnet BLDC Motor That Consider Shape-Ratio of Permanent Magnet (영구자석 형상비를 고려한 영구자석 매입형 BLDC 전동기 설계 및 특성해석)

  • Yun Keun-Young;Rhyu Se-Hyun;Yang Byoung-Yull;Kwon Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Now a day, owing to high efficiency and easy speed control of brushless DC(BLDC) motor, the demand of BLDC motor that has high power and low noises are increasing. Especially demand of interior permanent magnet(IPM) BLOC with high efficiency and high power in electric motion vehicle is increasing. IPM BLDC motor has permanent magnets in the rotor. Because it has two different flux paths, magnetic reluctance differences are generated in d-axis and q-axis. As the result of the inductance differences that are generated by the saliency(magnetic reluctance differences) in the rotor, the motor has structure advantage that has the additional reluctance torque except a magnet torque and because magnet is situated inside the rotor, the mechanical structure is strong. Therefore IPM BLDC motor makes possible to have high speed and high power. This paper presents a design and characteristics analysis of IPM BLDC motor for electric vehicle. To design IPM BLDC motor, surface mounted permanent magnet(SPM) BLDC motor is used as the initial design model. According to the shape-ratio() of permanent magnet, the characteristic of IPM BLDC motor is analyzed by Finite element method (FEM). Characteristics analysis results of the designed motor are compared with the experimental results.

Comparative Analysis of Magnetic Slot Wedges Design for Increasing Performance of Railway Traction Motor

  • Liu, Huai-Cong;Cho, Sooyoung;Hong, Hyun-Seok;Joo, Kyoung-Jin;Ham, Sang-Hwan;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2411-2418
    • /
    • 2017
  • This study focuses on the effects of using open stator slots in an interior permanent magnet traction motor with a magnetic slot wedge design in order to increase the power density at its base speed. In addition, such a configuration reduces the torque ripple under field-weakening conditions. Five different wedge models were selected, each of which was evaluated using a finite element analysis (FEA). Based on the initial model, we designed magnetic slot wedges for maximum back-EMF and minimum cogging torque. In addition, the d-q axis inductance was slightly altered due to the magnetic slot wedges. Finally, we analyzed the performance of a traction machine under field weakening control. Moreover, we have outlined the requirements for an ideal magnetic slot wedge design.

Study on The Electromagnetism of Interior Permanent Magnet Synchronous Motor due to Field Weakening (매입형 영구자석 동기전동기의 약계자 제어에 따른 전자기적 특성 연구)

  • Kwon, Soon-O
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.254-260
    • /
    • 2013
  • This paper deals with electromagnetic characteristics of IPMSM (Interior Permanent Magnet Synchronous motor) caused by field weakening current control. In order to extend operation speed, field weakening current control is generally used in IPMSM operation. During field weakening, distorted linkage fluxes are resulted by saturation of core material. Therefore, distorted input voltage waveform is required for sinusoidal current input. As the current vector angle increases for field weakening, distortion of linkage flux and back-emf becomes significant. This situation is analyzed by 2-dimensional finite element analysis and verified by experiment. With the results, it is concluded that motor parameters, such as linkage flux by permanent magnet, phase resistance, d-q axis inductance, are insufficient for estimating required voltage for given speed especially in field weakening and additional considerations for increased harmonics of voltage are required.