• 제목/요약/키워드: d- and q-axis Inductance

검색결과 43건 처리시간 0.028초

유전자 알고리즘을 이용한 매입형 영구자석 진동기의 최적 설계 (EFFICIENCY OPTIMIZATION OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTORS USING GENETIC ALGORITHM)

  • 조동혁;심동준;정현교;홍선기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.3-8
    • /
    • 1995
  • Since Interior Permanent Magnet syncronous Motor has a structure whose magnet is inserted in the rotor, d, q inductance is differ and the motor products hybrid torque combined allignment term and reluctance term. Air gap flux density and d, q axis inductances of the Interior Permanent Magnet Synchronous Motor obtained by analytical method are compensated using Finite Element Method. For optimal design, the efficiency of the motor is taken as the objective function, and Genetic Algorithm finds the value of design parameters which maximize the objective function.

  • PDF

상태방정식에 의한 자기여자 유도발전기의 과도전압특성 (Transient Voltage Characteristic of Self-excited Induction Generator by State Equation)

  • 김도진;좌종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.882-884
    • /
    • 2002
  • The transient voltage characteristics of capacitor self-exited induction generator are analyzed by the state equation which is obtained from the d-q axis equivalent circuit of stationary reference frame and torque equation. The d-q equivalent circuit is composed using the condition of stationary reference frame. The mutual inductance is only considered as a function of magnetizing current in the equivalent circuit. The characteristics are analyzed and discussed by the backward Euler method for various load conditions under specified initial conditions and input.

  • PDF

The Maximum Efficiency Driving in IPMSM by Precise Estimation of Current Phase Angle

  • Cho, Gyu-Won;Kim, Cheol-Min;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1221-1226
    • /
    • 2013
  • In this paper, the equivalent circuit for the efficiency calculation by precise estimation of the linkage flux, inductance and iron loss resistance was calculated accurately. In addition, the driving characteristics according to the current phase angle are analyzed and the maximum efficiency point is calculated. And then, analyzed and experimental values of the efficiency were compared. So, causes of error were expected to be vibration and noise by harmonic distortion of the voltage and current, and mechanical loss of dynamometer. In addition, the driving characteristics according to the current phase angle are analyzed and the maximum efficiency point is calculated.

Low Parameter Sensitivity Deadbeat Direct Torque Control for Surface Mounted Permanent Magnet Synchronous Motors

  • Zhang, Xiao-Guang;Wang, Ke-Qin;Hou, Ben-Shuai
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1211-1222
    • /
    • 2017
  • In order to decrease the parameter sensitivity of deadbeat direct torque control (DB-DTC), an improved deadbeat direct torque control method for surface mounted permanent-magnet synchronous motor (SPMSM) drives is proposed. First, the track errors of the stator flux and torque that are caused by model parameter mismatch are analyzed. Then a sliding mode observer is designed, which is able to predict the d-q axis currents of the next control period for one-step delay compensation, and to simultaneously estimate the model parameter disturbance. The estimated disturbance of this observer is used to estimate the stator resistance offline. Then the estimated resistance is required to update the designed sliding-mode observer, which can be used to estimate the inductance and permanent-magnetic flux linkage online. In addition, the flux and torque estimation of the next control period, which is unaffected by the model parameter disturbance, is achieved by using predictive d-q axis currents and estimated parameters. Hence, a low parameter sensitivity DB-DTC method is developed. Simulation and experimental results show the validity of the proposed direct control method.

유한요소법을 이용한 영구자석 매입 동기형 릴럭턴스 전동기의 Ld, Lq 인덕턴스에 미치는 영구자석 특성분석 (Effect Analysis of Magnet on Ld and Lq Inductance of Permanent Magnet Assisted Synchronous Reluctance Motor Using Finite Element Method)

  • 김기복;최시현;권선범;이중호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1009-1011
    • /
    • 2003
  • This study investigates the characteristics of Permanent Magnet Assisted Synchronous Reluctance Motor (PMASynRM) using coupled FEM and Preisach modelling. The focus of this paper is the characteristics analysis of d, q axis inductance according to magnetizing direction and quantity of interior permanent magnet far PMASynRM. Investigation on nonlinear characteristic of machine is performed by Preisachs theory application. Comparisons are given with characteristics of normal Synchronous reluctance motor(SynRM) and those according to the quantity of residual flux density (0.3T and 0.4T) in PMASynRM, respectively.

  • PDF

단상 AC/DC PWM 병렬 컨버터의 순시 제어 (Instantaneous Control of Single Phase AC/DC PWM Parallel Converters)

  • 원준희;정달호;오재윤
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.356-359
    • /
    • 2001
  • In this paper, the new control algorithm is proposed that compensates instantaneously the active and reactive components of the input currents by the synchronous d,q axis conversion of a single-phase current in controlling the single-phase AC/DC parallel converters for a high speed train. The leakage inductance of a transformer was used as a boost inductance and the ripple of a transformer's primary current was reduced considerably by the parallel operation of the two converters with a proper switching phase-shift. The stable and fast control response characteristic is certificated by a simulation.

  • PDF

영구자석 동기전동기의 약계자제어에 의한 고속 운전 (Field Weakening Control of IPMSM for High Speed Operation)

  • 윤병도;김윤호;김춘삼;이병송;김수열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.588-590
    • /
    • 1994
  • This paper describes current controlled PWM technique of IPM synchronous motors for a wide variety of speed control applications. The IPM synchronous motors have a saliency, in which the q-axis inductance is larger than the d-axis inductance. As a consequence, there exists a reluctance torque component Thus when this component is added to the torque component produced by the stator currents and the air-gap flux, IPM motor drives are readily applicable where full torque Is required up to full or base speed. They are however limited in their ability to operate in the power limited regime where the available torque is reduced as the speed is increased above its base value. This paper reviews the operation of the IPMSM drives when they are constrained to be within the permissible envelope of maximum inverter voltage and current to produce the rated power and to provide this with the highest attainable rotor speed. The wide variety of speed control strategy is analyzed and the performance is investigated by the computer simulation using actual parameters of a drive system. Simulation results are given and discussed.

  • PDF

HEV용 매입형 영구자석 동기전동기의 회전자 극수에 따른 운전영역 및 특성 파라미터 분석 (Study on the Operation Region and Characteristic parameters in Magnetic Pole of IPMSM for HEV)

  • 장익상;김원호;진창성;이주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1402-1408
    • /
    • 2010
  • Interior Permanent Magnet Synchronous Motor(IPMSM) produces two kind of torque that Magnetic and Reluctance torque. The permanent magnet linkage flux Ψa and d-axis and q-axis inductance have an important influence on the torque characteristic of IPMSM. Thus their accurate prediction is essential for predicting performance aspect such as the torque and flux-weakening capabilities. In this paper, we compared the characteristic parameters and operation region of two type IPMSM which has different pole numbers.

  • PDF

동기형 릴럭턴스 전동기의 토크와 역률 최대화를 위한 회전자 설계 기법 (A Method to Design the Rotor of Synchronous Reluctance Motors for Maximum Torque and Power Factor)

  • 김원호
    • 조명전기설비학회논문지
    • /
    • 제27권12호
    • /
    • pp.93-100
    • /
    • 2013
  • This paper propose a method to design the rotor of synchronous reluctance motors(SynRM) for maximum torque and power factor by using DOE(design of experiment) with the design variables which are parameters of barriers and segments. In this process, there are problems that require lots of simulation time and number of simulations when calculating the both torque and power factor using the finite element method in order to find load angle, core loss per speed. In order to improve this problem, we calculate only value of flux linkage by finite element method, and can decrease analysis and the number of analysis time by applying steady state expression of the power factor and torque. Finally, in order to verify the characteristics of optimal model, we make prototype motor and compare with the conventional SynRM. In this experiment, we use the DC current decay test for calculating d-and q-axis inductance.

영구자석 형상비를 고려한 영구자석 매입형 BLDC 전동기 설계 및 특성해석 (Design and Analysis of Characteristics of Interior Permanent Magnet BLDC Motor That Consider Shape-Ratio of Permanent Magnet)

  • 윤근영;류세현;양병열;권병일
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권1호
    • /
    • pp.1-8
    • /
    • 2006
  • Now a day, owing to high efficiency and easy speed control of brushless DC(BLDC) motor, the demand of BLDC motor that has high power and low noises are increasing. Especially demand of interior permanent magnet(IPM) BLOC with high efficiency and high power in electric motion vehicle is increasing. IPM BLDC motor has permanent magnets in the rotor. Because it has two different flux paths, magnetic reluctance differences are generated in d-axis and q-axis. As the result of the inductance differences that are generated by the saliency(magnetic reluctance differences) in the rotor, the motor has structure advantage that has the additional reluctance torque except a magnet torque and because magnet is situated inside the rotor, the mechanical structure is strong. Therefore IPM BLDC motor makes possible to have high speed and high power. This paper presents a design and characteristics analysis of IPM BLDC motor for electric vehicle. To design IPM BLDC motor, surface mounted permanent magnet(SPM) BLDC motor is used as the initial design model. According to the shape-ratio() of permanent magnet, the characteristic of IPM BLDC motor is analyzed by Finite element method (FEM). Characteristics analysis results of the designed motor are compared with the experimental results.