• Title/Summary/Keyword: cytosol

Search Result 477, Processing Time 0.028 seconds

Carpomitra costata Extract Suppresses Interleukin-1β-Induced Inflammatory Response in SW1353 Human Chondrocytes through Suppressing NF-κB Signaling Pathway

  • Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.99-107
    • /
    • 2020
  • Osteoarthritis (OA) is an inflammatory degenerative joint disease that is accompanied by irreversible joint cartilage destruction. Recently, the antioxidant effects of Carpomitra costata, which is a type of brown algae, have been reported, but their effects on OA have not been investigated. In this study, the anti-osteoarthritic effect of the ethanol extract of C. costata (EECC) on SW1353 human chondrocytes was studied. Results showed that EECC significantly attenuated the interleukin-1β (IL-1β)-induced release of pro-inflammatory mediators, including prostaglandin E2 and nitric oxide (NO), as well as expressions of cyclo-oxygenase-2 and inducible NO synthase. EECC also inhibited the IL-1β-induced expressions of matrix metalloproteinase-1, -3, and -13 in SW1353 chondrocytes, which reduced their extracellular secretion. In addition, the oxidative stress induced by IL-1β was confirmed to be blocked by EECC due to the inhibition of reactive oxygen species generation. Moreover, EECC suppressed IL-1β-mediated translocation of nuclear factor-kappa B (NF-κB) from cytosol into the nucleus and the degradation of IκB-α, which indicates that EECC exhibits anti-inflammatory effects by inhibiting the NF-κB signaling pathway. These results are the first to demonstrate the anti-inflammatory activities of C. costata extracts in chondrocytes, thus suggesting that this algae extract may be used in the treatment of OA.

The Effect of Honokiol on Ergosterol Biosynthesis and Vacuole Function in Candida albicans

  • Sun, Lingmei;Liao, Kai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1835-1842
    • /
    • 2020
  • Ergosterol, an essential constituent of membrane lipids of yeast, is distributed in both the cell membrane and intracellular endomembrane components such as vacuoles. Honokiol, a major polyphenol isolated from Magnolia officinalis, has been shown to inhibit the growth of Candida albicans. Here, we assessed the effect of honokiol on ergosterol biosynthesis and vacuole function in C. albicans. Honokiol could decrease the ergosterol content and upregulate the expression of genes related with the ergosterol biosynthesis pathway. The exogenous supply of ergosterol attenuated the toxicity of honokiol against C. albicans. Honokiol treatment could induce cytosolic acidification by blocking the activity of the plasma membrane Pma1p H+-ATPase. Furthermore, honokiol caused abnormalities in vacuole morphology and function. Concomitant ergosterol feeding to some extent restored the vacuolar morphology and the function of acidification in cells treated by honokiol. Honokiol also disrupted the intracellular calcium homeostasis. Amiodarone attenuated the antifungal effects of honokiol against C. albicans, probably due to the activation of the calcineurin signaling pathway which is involved in honokiol tolerance. In conclusion, this study demonstrated that honokiol could inhibit ergosterol biosynthesis and decrease Pma 1p H+-ATPase activity, which resulted in the abnormal pH in vacuole and cytosol.

Anti-thrombus Effects of Isoscopoletin by Regulating Cyclic Nucleotides on U46619-induced Platelets (U46619 유도의 혈소판에서 Cyclic Nucleotides 조절을 통한 Isoscopoletin의 혈전생성 억제효과)

  • Lee, Dong-Ha
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.1
    • /
    • pp.26-33
    • /
    • 2021
  • During blood vessel damage, an essential step in the hemostatic process is platelet activation. However, it is important to properly control platelet activation, as various cardiovascular diseases, such as stroke, atherosclerosis, and myocardial infarction, are also caused by excessive platelet activation. Found primarily in the roots of plants of the genus Artemisia or Scopolia, isoscopoletin has been studied to demonstrate its potential pharmacological effects against Alzheimer's disease and anticancer, but the mechanisms and roles involved in thrombus formation and platelet aggregation are insufficient. This study investigated the effect of isoscopoletin on U46619-induced human platelet activation. As a result, isoscopoletin significantly increased the levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) dose-dependently. In addition, isoscopoletin significantly phosphorylated inositol 1, 4, 5-triphosphate receptor (IP3R) and vasodilator-stimulated phosphprotein (VASP), which are known substrates for cAMP-dependent kinases and cGMP-dependent kinases. Phosphorylated IP3R by isoscopoletin inhibited Ca2+ mobilization from the dense tubular system Ca2+ channels to cytosol, and phosphorylated VASP was involved in the inhibition of fibrinogen binding through αIIb/β3 inactivation in the platelet membrane. Isoscopoletin finally reduced thrombin-induced fibrin clotting production. Therefore, this study suggests that isoscopoletin has a potent antiplatelet effect and may be helpful for platelet-related thrombotic diseases.

Brief Review on the Processes for RNA-Platform Vaccine Production (RNA 플랫폼 백신 제조공정 고찰 연구)

  • Roh, Hyungmin;Oh, Kyeongseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.179-186
    • /
    • 2021
  • Among the Covid-19 vaccine platforms, mRNA-platform vaccines are summarized qualitatively in this paper. Manufacturing mRNA vaccines consist of serial processes; the preparation process of DNA template, the transcription of mRNA, nanoemulsion process, and the fill and finish unit combined with formulation stages. It is noticeable that major players are collaborated for producing mRNA vaccines. In particular, the nanoemulsion process is recognized to the key process requiring formulated lipid materials to protect modified mRNA until they arrive in intracellular cytosol. It is known that the nanoemulsion process adapts well-designed microfluidic devices. We expect that the nanoemulsion process will stimulate pharmaceutical industries to develop diverse applications.

Genome-wide analysis of Solanum lycopersicum L. cyclophilins

  • Khatun, Khadiza;Robin, Arif Hasan Khan;Islam, Md. Rafiqul;Jyoti, Subroto Das;Lee, Do-Jin;Kim, Chang Kil;Chung, Mi-Young
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.15-29
    • /
    • 2022
  • Cyclophilins (CYPs) are highly conserved ubiquitous proteins belong to the peptidyl prolyl cis/trans isomerase (PPIase) superfamily. These proteins are present in a wide range of organisms; they contain a highly conserved peptidyl-prolyl cis/trans isomerase domain. A comprehensive database survey identified a total of 35 genes localized in all cellular compartments of Solanum lycopersicum L., but largely in the cytosol. Sequence alignment and conserved motif analyses of the SlCYP proteins revealed a highly conserved CLD motif. Evolutionary analysis predicted the clustering of a large number of gene pairs with high sequence similarity. Expression analysis using the RNA-Seq data showed that the majority of the SlCYP genes were highly expressed in mature leaves and blooming flowers, compared with their expression in other organs. This study provides a basis for the functional characterization of individual CYP genes in the future to elucidate their role(s) in protein refolding and long-distance signaling in tomatoes and in plant biology, in general.

Apoptin gene delivery by a PAMAM dendrimer modified with a nuclear localization signal peptide as a gene carrier for brain cancer therapy

  • Bae, Yoonhee;Lee, Jell;Kho, Changwon;Choi, Joon Sig;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.467-478
    • /
    • 2021
  • In this study, we aimed to synthesize PAMAMG3 derivatives (PAMAMG3-KRRR and PAMAMG3-HKRRR), using KRRR peptides as a nuclear localization signal and introduced histidine residues into the KRRR-grafted PAMAMG3 for delivering a therapeutic, carcinoma cell-selective apoptosis gene, apoptin into human primary glioma (GBL-14) cells and human dermal fibroblasts. We examined their cytotoxicity and gene expression using luciferase activity and enhanced green fluorescent protein PAMAMG3 derivatives in both cell lines. We treated cells with PAMAMG3 derivative/apoptin complexes and investigated their intracellular distribution using confocal microscopy. The PAMAMG3-KRRR and PAMAMG3-HKRRR dendrimers were found to escape from endolysosomes into the cytosol. The JC-1 assay, glutathione levels, and Annexin V staining results showed that apoptin triggered cell death in GBL-14 cells. Overall, these findings indicated that the PAMAMG3-HKRRR/apoptin complex is a potential candidate for an effective nonviral gene delivery system for brain tumor therapy in vitro.

Natural Compound Shikonin Induces Apoptosis and Attenuates Epithelial to Mesenchymal Transition in Radiation-Resistant Human Colon Cancer Cells

  • Shilnikova, Kristina;Piao, Mei Jing;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Herath, Herath Mudiyanselage Udari Lakmini;Cho, Suk Ju;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.137-144
    • /
    • 2022
  • Radiation resistance represents an imperative obstacle in the treatment of patients with colorectal cancer, which remains difficult to overcome. Here, we explored the anti-proliferative and migration-inhibiting properties of the natural product shikonin on a radiation-resistant human colon carcinoma cell line (SNU-C5RR). Shikonin reduced the viability of these cells in a dose-dependent manner; 38 µM of shikonin was determined as the half-maximal inhibitory concentration. Shikonin induced apoptotic cell death, as demonstrated by increased apoptotic body formation and the number of TUNEL-positive cells. Moreover, shikonin enhanced mitochondrial membrane depolarization and Bax expression and also decreased Bcl-2 expression with translocation of cytochrome c from mitochondria into the cytosol. In addition, shikonin activated mitogen-activated protein kinases, and their specific inhibitors reduced the cytotoxic effects of shikonin. Additionally, shikonin decreased the migration of SNU-C5RR cells via the upregulation of E-cadherin and downregulation of N-cadherin. Taken together, these results suggest that shikonin induces mitochondria-mediated apoptosis and attenuates epithelial-mesenchymal transition in SNU-C5RR cells.

Tollip negatively regulates mitophagy by promoting the mitochondrial processing and cytoplasmic release of PINK1

  • Shin, Woo Hyun;Chung, Kwang Chul
    • BMB Reports
    • /
    • v.55 no.10
    • /
    • pp.494-499
    • /
    • 2022
  • PTEN-induced putative kinase 1 (PINK1) is a serine/threonine kinase that phosphorylates several substrates and exerts neuroprotective effects against stress-induced apoptotic cell death. Mutations in PINK1 have been linked to autosomal recessive forms of Parkinson's disease (PD). Mitophagy is a type of autophagy that selectively promotes mitochondrial turnover and prevents the accumulation of dysfunctional mitochondria to maintain cellular homeostasis. Toll-interacting protein (Tollip) was initially identified as a negative regulator of IL-1β receptor signaling, suppressing inflammatory TLR signaling cascades. Recently, Tollip has been reported to play a role in autophagy and is implicated in neurodegeneration. In this study, we determined whether Tollip was functionally linked to PINK1-mediated mitophagy. Our results demonstrated that Tollip promoted the mitochondrial processing of PINK1 and altered the localization of PINK1, predominantly to the cytosol. This action was attributed to increased binding of PINK1 to mitochondrial processing peptidase β (MPPβ) and the subsequent increase in MPPβ-mediated mitochondrial PINK1 cleavage. Furthermore, Tollip suppressed mitophagy following carbonyl cyanide m-chlorophenylhydrazone-induced mitochondrial dysfunction. These findings suggest that Tollip inhibits mitophagy via the PINK1/parkin pathway upon mitochondrial damage, leading to the blockade of PINK1-mediated neuroprotection.

Resveratrol is an arginase inhibitor contributing to vascular smooth muscle cell vasoconstriction via increasing cytosolic calcium

  • Chang Ik Choi;Bon Hyeock Koo;Dongeui Hong;Hyung Joo Kwon;Kwang Lae Hoe;Moo Ho Won;Young Myeong Kim;Hyun Kyo Lim;Sungwoo Ryoo
    • Molecular Medicine Reports
    • /
    • v.19 no.5
    • /
    • pp.3767-3774
    • /
    • 2019
  • The contractility of vascular smooth muscle cells (VSMCs) controls the lumen diameter of vessels, thus serving a role in regulating blood pressure and organ blood flow. Although arginases are known to have numerous effects in the biological activities of VSMCs, the effects of arginase II on the constriction of VSMCs has not yet been investigated. When conducting a natural products screen for an inhibitor against arginase, the present study identified that a relatively high concentration of resveratrol (RSV) exhibited arginase inhibitory activity. Therefore, the present study investigated whether RSV could regulate VSMCs contractions and the underlying mechanism. Arginase inhibition by RSV led to an increase in the concentration of the substrate L-Arg and an accompanying increase in the cytosol Ca2+ concentration [(Ca2+)c] in VSMCs. The increased [Ca2+]c induced by RSV and L-Arg treatments resulted in CaMKII-dependent MLC20 phosphorylation. The effects of RSV on VSMCs were maintained even when VSMCs were pre-treated with sirtinol, an inhibitor of Sirt proteins. In a vascular tension assay with de-endothelialized aortic vessels, vasoconstrictor responses, which were measured using phenylephrine (PE), were significantly enhanced in the RSV- and L-Arg-treated vessels. Therefore, although arginase inhibition has exhibited beneficial effects in various diseases, care is required when considering administration of an arginase inhibitor to patients with vessels endothelial dysfunction as RSV can induce vessel contraction.

감마선 조사전 홍삼 추출물의 투여가 생쥐 간에서의 Superoxide dismutase의 활성과 지질 과산화에 미치는 영향

  • Park, Yeong-Sun;Kim, Dong-Yun;Jang, Jae-Cheol;Kim, Dong-Jo;Jeon, Cheol
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.5 no.1
    • /
    • pp.142-151
    • /
    • 1992
  • Radioprotective effects of a red ginseng extracts on antioxidant enzymes(Superoxide dismutase, catalase and peroxidase) activities relationship to lipid peroxidation were studied in the cytosol fraction of mice liver. The experiments were carried out on Irradiated (5.5 Gy, $^{\60}Co$) and non-irradiated ICR mice after treatment of red ginseng extracts (5.5mg/mouse ; ip), In wholebody irradiated mice, irradiation caused a decrease in the activity of all these enzymes(on Day 21) The activities of SOD, Catalase and Peroxidase of red ginseng extracts treated mice were enhanced by $35.4\%,\;20.2\%$ and $20.1\%$, compared with non-treated mice. The red ginseng extracts led to inhibited increase of malondialdehyde product by ionizing radiation. The enhanced activity of enzymes that removed free radicals generated by radiation and thereby indicate that ginseng probably plays on important role in radioprotective effect.

  • PDF