• 제목/요약/키워드: cytoplasmic localization

검색결과 78건 처리시간 0.029초

29-kDa FN-f inhibited autophagy through modulating localization of HMGB1 in human articular chondrocytes

  • Hwang, Hyun Sook;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • 제51권10호
    • /
    • pp.508-513
    • /
    • 2018
  • Fibronectin fragments found in the synovial fluid of patients with osteoarthritis (OA) induce the catabolic responses in cartilage. Nuclear high-mobility group protein Box 1 (HMGB1), a damage-associated molecular pattern, is responsible for the regulation of signaling pathways related to cell death and survival in response to various stimuli. In this study, we investigated whether changes induced by 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) in HMGB1 expression influences the pathogenesis of OA via an HMGB1-modulated autophagy signaling pathway. Human articular chondrocytes were enzymatically isolated from articular cartilage. The level of mRNA was measured by quantitative real-time PCR. The expression of proteins was examined by western blot analysis, immnunofluorescence assay, and enzyme-linked immunosorbent assay. Interaction of proteins was evaluated by immunoprecipitation. The HMGB1 level was significantly lower in human OA cartilage than in normal cartilage. Although 29-kDa FN-f significantly reduced the HMGB1 expression at the mRNA and protein levels 6 h after treatment, the cytoplasmic level of HMGB1 was increased in chondrocytes treated with 29-kDa FN-f, which significantly inhibited the interaction of HMGB1 with Beclin-1, increased the interaction of Bcl-2 with Beclin-1, and decreased the levels of Beclin-1 and phosphorylated Bcl-2. In addition, the level of microtubule-associated protein 1 light chain 3-II, an autophagy marker, was down-regulated in chondrocytes treated with 29-kDa FN-f, whereas the effect was antagonized by mTOR knockdown. Furthermore, prolonged treatment with 29-kDa FN-f significantly increased the release of HMGB1 into the culture medium. These results demonstrated that 29-kDa FN-f inhibits chondrocyte autophagy by modulating the HMGB1 signaling pathway.

Expression of Human Papillomavirus Type 16, Prototype and Natural Variant E7 Proteins using Baculovirus Expression System

  • Han, Hee-Sung;Kee, Sun-Ho;Hwang, Soon-Bong;Kim, Hyung-Jun;Cho, Kyung-A;Kim, Yoon-Won;Cho, Min-Kee;Chang, Woo-Hyun
    • 대한바이러스학회지
    • /
    • 제28권1호
    • /
    • pp.53-62
    • /
    • 1998
  • Human papillomavirus (HPV) 16, E7 proteins derived from the prototype (Bac73) and natural variant (Bac101) E7 open reading frame were produced in Sf9 insect cells. The variant E7 gene occurred naturally by substitution mutation at the position of 88 nucleotide, resulting serine instead of asparagine. Using E7 specific monoclonal antibody (VD6), both E7 proteins were identified in recombinant baculovirus infected SF9 cells. Radiolabelling and immunoprecipitation analysis revealed that both E7 proteins were phosphoproteins. Immunostaining result showed that E7 proteins were mainly localized in the cytoplasm. Nuclear form of E7 proteins was also detected after a sequential fractionation procedure for removing chromatin structure. Considering that the VD6 recognition site in E7 protein is located within 10 amino acid at the N-terminus, this region appears to be blocked by the nuclear component. Western blot analysis revealed that nuclear form was more abundant than cytoplasmic E7 proteins. Time course immunostaining showed that the primary location of E7 protein was the nucleus and exported to the cytoplasm as proteins were accumulated. These events occurred similarly in both Bac73 and Bac101 infected Sf9 cells, suggesting that these two proteins may have similar biological functions.

  • PDF

Effects of Jasmonic Acid and Wounding on Polyphenol Oxidase Activity in Senescing Tomato Leaves

  • Jin, Sun-Young;Hong, Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권4호
    • /
    • pp.231-240
    • /
    • 2000
  • Effects of Jasmonic Acid and Wounding on Polyphenol Oxidase Activity in Senescing Tomato Leaves The effects of jasmonic acid(JA) and wounding on polyphenol oxidase(PPO) during leaf senescence was investigated by measuring the PPO activity in detached tomato(Lycopersicon esculentum Mill.) leaves of two-week-old seedlings. The PPO activity in the detached senescing leaves increased significantly in the dark. The leaf segments responded to the application of JA with accelerated senescence, as indicated by the loss of chlorophyll and rapid increase in the PPO activity. The senescence-promoting action of JA differed in the light and dark. Wounding the detached senescing leaves by scraping surface segments or making punctures with needles considerably delayed the loss of chlorophyll and had a significant effect on the PPO activity, the amounts of which were roughly proportional to the intensity of the wounding. In the dark, the combination of wounding plus JA resulted in stable levels of chlorophyll and PPO. JA and ABA acted similarly in both unwounded and wounded leaves, however, the amount of chlorophyll and PPO in the wounded segments was always higher than in the respective controls. JA was found to eliminate the senescence-retarding action of benzyladenine. In a histochemical localization test, the PPO activity was found to be localized in the cell walls of the parenchyma tissue, thereby indicating moderate cytoplasmic reactions. In the JA-treated plants, the PPO activity was intense in the cells of the cortex and phloem parenchyma. Accordingly, based on these observations it would appear that PPO is a component of a defense response maker, whereas JA plays an integral role in the intracellular signal transduction involved in inducible defense mechanisms.

  • PDF

Localization of Weel and Other Cell Cycle Machinery in the Mouse Primordial and Growing Follicles

  • Park, Chang-Eun;Kim, Young-Hoon;Jeon, Eun-Hyun;Lee, Suman;Lee, Sook-Hwan;Lee, Kyung-Ah
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 전기 한국발생생물학회 제16차 학술대회논문집
    • /
    • pp.21-23
    • /
    • 2003
  • Mechanisms regulate the arrest and growth of the resting primordial follicles are very poorly understood. To elucidate genes involved in the early folliculogenesis, we conducted suppression subtractive hybridization using mRNA from day1 and day5 ovaries and selected weel for further analysis, since it was most frequent gene in the day1-subtracted cDNA library (1). Expression of weel and correlated components of the cell cycle machinery, such as cdc2, cyclin B1, cdc25C, and phosphorylated cdc2 was evaluated by immunohistochemistry. In primordial follicles, expression of weel, cdcw, and cyclin B1 was cytoplasmic in oocytes, but phosphorylated cdc2 was weakly expressed in oocytes. While cdc25C expression was in ovarian somatic and in some theca cells. None of components was expressed in the pre-granulosa cells of the primordial follicles, while weel weakly, and cdc2 and cyclin B1 was strongly expressed in the granulosa cells of the growing follicles. Results from the present study suggest that 1) the mejotic arrest of the oocytes may not due to of cell cycle machinery, and 2) the weel may arrest meiosis by sequestering cdc2 and cyclin B1 in the cytoplasm by protein-protein interactions and/or by inhibitory phosphorylation.

  • PDF

N-Acetyl-D-Glucosamine Kinase Is a Component of Nuclear Speckles and Paraspeckles

  • Sharif, Syeda Ridita;Lee, HyunSook;Islam, Md. Ariful;Seog, Dae-Hyun;Moon, Il Soo
    • Molecules and Cells
    • /
    • 제38권5호
    • /
    • pp.402-408
    • /
    • 2015
  • Protein O-GlcNAcylation, dictated by cellular UDP-N-acetylglucosamine (UDP-GlcNAc) levels, plays a crucial role in posttranslational modifications. The enzyme GlcNAc kinase (NAGK, E.C. 2.7.1.59) catalyzes the formation of GlcNAc-6-phosphate, which is a major substrate for the biosynthesis of UDP-GlcNAc. Recent studies have revealed the expression of NAGK in different types of cells especially in neuronal dendrites. Here, by immunocytochemistry (ICC) and immunonucleochemistry (INC) of cultured rat hippocampal neurons, HEK293T and GT1-7 cells, we have showed that NAGK immuno-reactive punctae being present in the nucleoplasm colocalized with small nuclear ribonucleoprotein-associated protein N (snRNPN) and p54NRB, which are speckle and paraspeckle markers, respectively. Furthermore, NAGK IR cluster was also found to be colocalized with GTF2H5 (general transcription factor IIH, polypeptide 5) immuno reactive punctae. In addition, relative localization to the ring of nuclear lamin matrix and to GlcNAc, which is highly enriched in nuclear pore complexes, showed that NAGK surrounds the nucleus at the cytoplasmic face of the nuclear outer membrane. By in situ proximity ligation assay (PLA) we confirmed the colocalization of NAGK with snRNPN in the nucleus and in dendrites, while we also verified the interactions of NAGK with p54NRB, and with GTF2H5 in the nucleus. These associations between NAGK with speckle, paraspeckle and general transcription factor suggest its regulatory roles in gene expression.

Interaction between Parasitophorous Vacuolar Membrane-associated GRA3 and Calcium Modulating Ligand of Host Cell Endoplasmic Reticulum in the Parasitism of Toxoplasma gondii

  • Kim, Ji-Yeon;Ahn, Hye-Jin;Ryu, Kyung-Ju;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • 제46권4호
    • /
    • pp.209-216
    • /
    • 2008
  • A monoclonal antibody against Toxoplasma gondii of Tg556 clone (Tg556) blotted a 29 kDa protein, which was localized in the dense granules of tachyzoites and secreted into the parasitophorous vacuolar membrane (PVM) after infection to host cells. A cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg556, and the full-length was completed by 5'-RACE of 2,086 bp containing an open reading frame (ORF) of 669 bp. The ORF encoded a polypeptide of 222 amino acids homologous to the revised GRA3 but not to the first reported one. The polypeptide has 3 hydrophobic moieties of an N-terminal stop transfer sequence and 2 transmembrane domains (TMD) in posterior half of the sequence, a cytoplasmic localization motif after the second TMD and an endoplasmic reticulum (ER) retrival motif in the C-terminal end, which suggests GRA3 as a type III transmembrane protein. With the ORF of GRA3, yeast two-hybrid assay was performed in HeLa cDNA expression library, which resulted in the interaction of GRA3 with calcium modulating ligand (CAMLG), a type II transmembrane protein of ER. The specific binding of GRA3 and CAMLG was confirmed by glutathione S-transferase (GST) pull-down and immunoprecipitation assays. The localities of fluorescence transfectionally expressed from GRA3 and CAMLG plasmids were overlapped completely in HeLa cell cytoplasm. In immunofluorescence assay, GRA3 and CAMLG were shown to be co-localized in the PVM of host cells. Structural binding of PVM-inserted GRA3 to CAMLG of ER suggested the receptor-ligand of ER recruitment to PVM during the parasitism of T. gondii.

지질 및 전분성 종자에서 지질 및 지질가수분해효소의 분포 (Distribution of Lipid and Lipase in Lipid-and Starch-Rich Seeds)

  • 김우갑
    • Journal of Plant Biology
    • /
    • 제35권3호
    • /
    • pp.219-227
    • /
    • 1992
  • 지질성 종자(해바라기, 피마자, 잣나무)와 전분성 종자(완두, 옥수수)를 대상으로 배유와 자엽세포내의 저장지질의 형성, 분포 및 구조적 변화 등과 지질가수분해효소의 활성부위 및 세포내 분포양상 등을 세포화학적 방법을 이용하여 조사하였다. 채종후의 지질 및 전분성 종자의 배유와 저장성 자엽세포에는 구형의 단백과립과 지질소구인 스페로솜, 전분과립 등의 저장물질이 널리 분포하였으며 세포내소기관은 드물게 관찰되었다. 활면소포체에서 형성되어 방출된 소포들과 스페로솜의 초기 단계로 여겨지는, 전자밀도가 낮은 막성의 과립들은 염색상이 스페로솜의 그것과 동일하였다. 조면소포체에서 방출된 전자밀도가 높은 과립들은 원형질막의 인접부위에서 관찰되었다. 지질염색반응 결과, 일반적인 미세구조의 염색상과는 상이하게 단백과립내의 단백질보다는 구형의 스페로솜의 전자밀도가 높고 균일함이 확인되어 스페로솜의 주요 구성성분은 지질임을 알 수 있었다. 스페로솜과 활면소포체에서 방출하는 물질을 함유한 소포는 염색상이 동일하였다. 지질가수분해효소는 분해과정이 진행중인 스페로솜의 기질과 막 주변부, 그리고 원형질막 부근에서 강한 활성을 보였다.

  • PDF

AlLTPs from Allium species represent a novel class of lipid transfer proteins that are localized in endomembrane compartments

  • Yi, Seung-In;Park, Mee-Yeon;Kim, Ju-Kon;Choi, Yang Do
    • Plant Biotechnology Reports
    • /
    • 제3권3호
    • /
    • pp.213-223
    • /
    • 2009
  • Lipid transfer proteins (LTPs) are widely distributed in the plant kingdom, but their functions remain elusive. The proteins AlLTP2-4 were isolated from three related Allium plants: garlic (A. sativum L.), Welsh onion (A. fistulosum L.), and Nanking shallot (A. ascalonicum L.). These novel proteins comprise a new class of LTPs associated with the Ace-AMP1 from onion (A. cepa L.). The AlLTP genes encode proteins harboring 132 common amino acids and also share a high level of sequence identity. Protein characteristics and phylogenetic analysis suggest that LTPs could be classified into five distinct groups. The AlLTPs were clustered into the most distantly related plant LTP subfamily and appeared to be restricted to the Allium species. In particular, the number of amino acids existing between the fourth and fifth Cys residue was suggested as a conserved motif facilitating the categorization of all the LTP-related proteins in the family. Unlike other LTPs, AlLTPs harboring both the putative C-terminal propeptide and N-terminal signal peptide were predicted to be localized to cytoplasmic vacuoles. When a chimeric GFP protein fused with both N-terminal and C-terminal AlLTP2 signal peptides was expressed in rice cells, the fluorescence signal was detected in the endomembrane compartments, thereby confirming that AlLTPs are an unprecedented intracellular type of LTP. Collectively, our present data demonstrate that AlLTPs are a novel type of LTP associated with the Allium species.

OCT4B Isoform Promotes Anchorage-Independent Growth of Glioblastoma Cells

  • Choi, Sang-Hun;Kim, Jun-Kyum;Jeon, Hee-Young;Eun, Kiyoung;Kim, Hyunggee
    • Molecules and Cells
    • /
    • 제42권2호
    • /
    • pp.135-142
    • /
    • 2019
  • OCT4, also known as POU5F1 (POU domain class 5 transcription factor 1), is a transcription factor that acts as a master regulator of pluripotency in embryonic stem cells and is one of the reprogramming factors required for generating induced pluripotent stem cells. The human OCT4 encodes three isoforms, OCT4A, OCT4B, and OCT4B1, which are generated by alternative splicing. Currently, the functions and expression patterns of OCT4B remain largely unknown in malignancies, especially in human glioblastomas. Here, we demonstrated the function of OCT4B in human glioblastomas. Among the isoform of OCT4B, OCT4B-190 ($OCT4B^{19kDa}$) was highly expressed in human glioblastoma stem cells and glioblastoma cells and was mainly detected in the cytoplasm rather than the nucleus. Overexpression of $OCT4B^{19kDa}$ promoted colony formation of glioblastoma cells when grown in soft agar culture conditions. Clinical data analysis revealed that patients with gliomas that expressed OCT4B at high levels had a poorer prognosis than patients with gliomas that expressed OCT4B at low levels. Thus, $OCT4B^{19kDa}$ may play a crucial role in regulating cancer cell survival and adaption in a rigid environment.

Rapamycin Rescues the Poor Developmental Capacity of Aged Porcine Oocytes

  • Lee, Seung Eun;Kim, Eun Young;Choi, Hyun Yong;Moon, Jeremiah Jiman;Park, Min Jee;Lee, Jun Beom;Jeong, Chang Jin;Park, Se Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권5호
    • /
    • pp.635-647
    • /
    • 2014
  • Unfertilized oocytes age inevitably after ovulation, which limits their fertilizable life span and embryonic development. Rapamycin affects mammalian target of rapamycin (mTOR) expression and cytoskeleton reorganization during oocyte meiotic maturation. The goal of this study was to examine the effects of rapamycin treatment on aged porcine oocytes and their in vitro development. Rapamycin treatment of aged oocytes for 24 h (68 h in vitro maturation [IVM]; $44h+10{\mu}M$ rapamycin/24 h, $47.52{\pm}5.68$) or control oocytes (44 h IVM; $42.14{\pm}4.40$) significantly increased the development rate and total cell number compared with untreated aged oocytes (68 h IVM, $22.04{\pm}5.68$) (p<0.05). Rapamycin treatment of aged IVM oocytes for 24 h also rescued aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (MOS, BMP15, GDF9, and CCNB1) compared with untreated, 24 h-aged IVM oocytes (p<0.05). Furthermore, rapamycin treatment of aged oocytes decreased reactive oxygen species (ROS) activity and DNA fragmentation (p<0.05), and downregulated the mRNA expression of mTOR compared with control or untreated aged oocytes. By contrast, rapamycin treatment of aged oocytes increased mitochondrial localization (p<0.05) and upregulated the mRNA expression of autophagy (BECN1, ATG7, MAP1LC3B, ATG12, GABARAP, and GABARAPL1), anti-apoptosis (BCL2L1 and BIRC5; p<0.05), and development (NANOG and SOX2; p<0.05) genes, but it did not affect the mRNA expression of pro-apoptosis genes (FAS and CASP3) compared with the control. This study demonstrates that rapamycin treatment can rescue the poor developmental capacity of aged porcine oocytes.