• Title/Summary/Keyword: cytochrome P450 mono-oxygenase

Search Result 4, Processing Time 0.021 seconds

Overexpression of rice premnaspirodiene oxygenase reduces the infection rate of Xanthomonas oryzae pv. oryzae

  • Nino, Marjohn C.;Song, Jae-Young;Nogoy, Franz Marielle;Kim, Me-Sun;Jung, Yu Jin;Kang, Kwon-Kyoo;Nou, Illsup;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.43 no.4
    • /
    • pp.422-431
    • /
    • 2016
  • Plants utilize cytochrome P450, a large superfamily of heme-containing mono-oxygenases, in the synthesis of lignins, UV protectants, pigments, defense compounds, fatty acids, hormones, and signaling molecules. Despite the overwhelming assortment of rice P450 accession numbers in the database, their functional studies are lacking. So far, there is no evidence involving rice P450 in disease immunity. Most of our understanding has been based on other plant systems that are mostly dicot. In this study, we isolated the cytochrome P450 (OsCYP71) in rice, and screened the gene using gain-of-function technique. The full-length cDNA of OsCYP71 was constitutively overexpressed using the 35S promoter. We then explored the functions of OsCYP71 in the rice - Xanthomonas oryzae pv. oryzae pathosystem. Using the gene expression assays, we demonstrate the interesting correlation of PR gene activation and the magnitude of resistance in P450-mediated immunity.

Identification of Differentially Expressed Genes in Improved Rainbow Trout Growth by Treatment with a Fish Myostatin Prodomain Using the Annealing Control Primer System (Annealing control primer system을 이용한 어류 재조합 myostatin prodomain 단백질에 의해 성장이 증가된 무지개송어의 특이적 발현 유전자 탐색)

  • Lee, Sang-Beum;Jin, Hyung-Joo
    • Korean Journal of Ichthyology
    • /
    • v.24 no.2
    • /
    • pp.118-124
    • /
    • 2012
  • The present study was conducted to investigate different gene expression profile between treated poMSTNpro and non-treated in rainbow trout and to identify those genes that are specifically or predominantly expressed in treated poMSTNpro by employing annealing control primer (ACP)-based GeneFishing polymerase chain reaction (PCR). We isolated total RNAs in muscle tissues from the treated poMSTNpro fish by immersion bath technique with fish myostatin prodomain (Paralichthys olivaceus, poMSTNpro) for one month and the other was non-treated poMSTNpro, and synthesized cDNA using annealing control primers (ACP, Seegene, Korea). Using 20 different ACPs for PCR, were cloned sequenced, and analyzed identities of 2 differentially expressed genes (DEGs). According to BLAST analysis, sequences of 2 clones significantly matched database entries and confirmed by semi-quantitative RT-PCR. The functional roles of one up-regulated gene, cytochrome P450 mono-oxygenases 2K1v2 (CYP2K1v2), and one down-regulated gene was Profilin-1 were identified. We identified distinctive gene expression profiles in improved rainbow trout growth by treatment with a fish myostatin prodomain using ACP-based GeneFishing.

Characterization and Culture Optimization of Regiospecific Cyclosporin Hydroxylation in Rare Actinomycetes Species

  • PARK, NAM-SIL;MYEONG, JI-SEON;PARK, HYUN-JOO;HAN, KYU-BOEM;KIM, SANG-NYUN;KIM, EUNG-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.188-191
    • /
    • 2005
  • Abstract Cyclosporins are a family of clinically-important immunosuppressive cyclic peptides produced by Tolypocladium inflatum. The structural modification of cyclosporins via hydroxylation at various positions of N-methyl leucines in cyclosporin A leads to a dramatic change of their bioactive spectra. Among over 100 soil actinomycetes screened, two actinomycetes species, Sebekia benihana and Pseudonocardia autotrophica, were identified to contain superior cyclosporin A hydroxylation activities. A HPLC-based cyclosporin A hydroxylation assay revealed that each strain possesses distinctive hydroxylation specificity and regiospecificity; mono-hydroxylation at the 4th N-methyl leucine of cyclosporin A by S. benihana, and di-hydroxylations at both 4th and 9th N-methyl leucines of cyclosporin A by P. autotrophica. The conversion yields for cyclosporin A hydroxylation by both S. benihana and P. autotrophica were significantly improved from less than 10% and 18% up to 58% and 45%, respectively, in the optimized culture containing molybdenum with 0.05 g/l of cyclosporin A concentration. An ancymidol-specific inhibition of cyclosporin hydroxylation also suggested that the regiospecific cyclosporin hydroxylation might be catalyzed by a putative cytochrome P450 mono-oxygenase enzyme.

Association of CYP39A1, RUNX2 and Oxidized Alpha-1 Antitrypsin Expression in Relation to Cholangiocarcinoma Progression

  • Khenjanta, Chakkaphan;Thanan, Raynoo;Jusakul, Apinya;Techasen, Anchalee;Jamnongkan, Wassana;Namwat, Nisana;Loilome, Watcharin;Pairojkul, Chawalit;Yongvanit, Puangrat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10187-10192
    • /
    • 2015
  • Cytochrome P450 (CYP) enzymes are a large family of constitutive and inducible mono-oxygenase enzymes that play a central role in the oxidative metabolism of both xenobiotic and endogenous compounds. Several CYPs are involved in metabolism of oxysterols, which are cholesterol oxidation products whose expression may be dysregulated in inflammation-related diseases including cancer. This study focused on CYP39A1, which can metabolize 24-hydroxycholesterol (24-OH) that plays important roles in the inflammatory response and oxidative stress. We aimed to investigate the expression status of CYP39A1 and its transcription factor (RUNX2) in relation to clinical significance in cholangiocarcinoma (CCAs) and to determine whether 24-OH could induce oxidative stress in CCA cell lines. Immunohistochemistry showed that 70% and 30% of CCA patients had low and high expression of CYP39A1, respectively. Low expression of CYP39A1 demonstrated a significant correlation with metastasis. Our results also revealed that the expression of RUNX2 had a positive correlation with CYP39A1. Low expression of both CYP39A1 (70%) and RUNX2 (37%) was significantly related with poor prognosis of CCA patients. Interestingly, oxidized alpha-1 antitrypsin (ox-A1AT), an oxidative stress marker, was significantly increased in CCA tissues in which CYP39A1 and RUNX2 were down regulated. Additionally, immunocytochemistry showed that 24-OH could induce ox-A1AT in CCA cell lines. In conclusion, our study revealed putative roles of the CYP39A1 enzyme in prognostic determination of CCAs.