• Title/Summary/Keyword: cytochrome $b_5$

Search Result 222, Processing Time 0.029 seconds

Species-specific Marker Development for Environmental DNA Assay of Endangered Bull-head Torrent Catfish, Liobagrus obesus (멸종위기어류 퉁사리의 환경 DNA 분석을 위한 종 특이 마커 개발)

  • Yun, Bong Han;Kim, Yong Hwi;Sung, Mu Sung;Han, Ho-Seop;Han, Jeong-Ho;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.34 no.3
    • /
    • pp.208-217
    • /
    • 2022
  • We wanted to develop a real-time PCR assay capable of detecting Liobagrus obesus in environmental DNA (eDNA) extracted from freshwater samples using a pair of species-specific primers and probe for the endangered fish, L. obesus. The species-specific primers and probe were designed in consideration of single nucleotide polymorphisms between 65 species of freshwater fish living in the Republic of Korea within the cytochrome b (cytb) gene of mitochondrial DNA. The species-specific primers and probe, in the real-time PCR assay, showed high specificity as only the L. obesus genomic DNA (gDNA) was found to be positive in the specificity verification using 65 species gDNA of freshwater fish in the Republic of Korea. In addition, in the detection limit analysis using the serial dilution concentrations of L. obesus gDNA, it was found that it was possible to detect up to 0.2 pg, showing high sensitivity. Afterwards, using the species-specific primers and probe, real-time PCR assay was performed on freshwater samples obtained from 8 stations in the mid-upper basin of Geum River. As a result, the cytb gene of L. obesus was detected in total 5 stations including all 3 stations where this species was collected at the time of field survey. Therefore, the species-specific primers and probe developed in present study, and the real-time PCR assay using them, can accurately detect the cytb gene of L. obesus from eDNA samples, which can be utilized to monitor the existing habitats of this species and to discover potential new habitats.

The Effect of CYP2D6/3A5 Genotypes on Plasma Concentrations of Haloperidol after Adjunctive Treatment of Aripiprazole

  • Shim, Joo-Cheol;Ahn, Jung-Mi;Jung, Do-Un;Kong, Bo-Geum;Kang, Jae-Wook;Liu, Kwang-Hyeon;Shin, Jae-Gook
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.2
    • /
    • pp.95-100
    • /
    • 2011
  • Objectives To evaluate the drug interactions between aripiprazole and haloperidol, authors investigated plasma concentrations of those drugs by genotypes. Method Fifty six patients with a confirmed Diagnostic and Statistical Manual of Mental Disorders 4th edition diagnosis of schizophrenia were enrolled in this eight-week, double blind, placebo-controlled study. Twenty-eight patients received adjunctive aripiprazole treatment and twenty-eight patients received placebo while being maintained on haloperidol treatment. Aripiprazole was dosed at 15 mg/day for the first 4 weeks, and then 30 mg for the next 4 weeks. The haloperidol dose remained fixed throughout the study. Plasma concentrations of haloperidol and aripiprazole were measured by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) at baseline, week 1, 2, 4 and 8. $^*1$, $^*5$, and $^*10$ B alleles of CYP2D6 and $^*1$ and $^*3$ alleles of CYP3A5 were determined. The Student's T-test, Pearson's Chi-square test, Wilcoxon Rank Sum test and Logistic Regression analysis were used for data analysis. All tests were two-tailed and significance was defined as an alpha < 0.05. Results In the frequency of CYP2D6 genotype, $^*1/^*10$ B type was most frequent (36.5%) and $^*1/^*1$ (30.8%), $^*10B/^*10B$ (17.3%) types followed. In the frequency of CYP3A5 genotype, $^*3/^*3$ type was found in 63.5% of subjects, and $^*1/^*3$ type and $^*1/^*1$ were 30.8% and 5.8% respectively. The plasma levels of haloperidol and its metabolites did not demonstrate significant time effects and time-group interactions after adjunctive treatment of aripiprazole. The genotypes of CYP2D6 and 3A5 did not affect the plasma concentration of haloperidol in this trial. No serious adverse event was found after adding aripiprazole to haloperidol. Conclusion No significant drug interaction was found between haloperidol and aripiprazole. Genotypes of CYP2D6 and 3A5 did not affect the concentration of haloperidol after adding aripiprazole.

The Role of CYP2B6*6 Gene Polymorphisms in 3,5,6-Trichloro-2-pyridinol Levels as a Biomarker of Chlorpyrifos Toxicity Among Indonesian Farmers

  • Liem, Jen Fuk;Suryandari, Dwi A.;Malik, Safarina G.;Mansyur, Muchtaruddin;Soemarko, Dewi S.;Kekalih, Aria;Subekti, Imam;Suyatna, Franciscus D.;Pangaribuan, Bertha
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • Objectives: One of the most widely used pesticides today is chlorpyrifos (CPF). Cytochrome P450 (CYP)2B6, the most prominent catalyst in CPF bioactivation, is highly polymorphic. The objective of our study was to evaluate the role of CYP2B6*6, which contains both 516G>T and 785A>G polymorphisms, in CPF toxicity, as represented by the concentration of 3,5,6-trichloro-2-pyridinol (TCPy), among vegetable farmers in Central Java, Indonesia, where CPF has been commonly used. Methods: A cross-sectional study was conducted among 132 vegetable farmers. Individual socio-demographic and occupational characteristics, as determinants of TCPy levels, were obtained using a structured interviewer-administered questionnaire and subsequently used to estimate the cumulative exposure level (CEL). TCPy levels were detected with liquid chromatography-mass spectrometry. CYP2B6*6 gene polymorphisms were analyzed using a TaqMan® SNP Genotyping Assay and Sanger sequencing. Linear regression analysis was performed to analyze the association between TCPy, as a biomarker of CPF exposure, and its determinants. Results: The prevalence of CYP2B6*6 polymorphisms was 31% for *1/*1, 51% for *1/*6, and 18% for *6/*6. TCPy concentrations were higher among participants with CYP2B6*1/*1 than among those with *1/*6 or *6/*6 genotypes. CYP2B6*6 gene polymorphisms, smoking, CEL, body mass index, and spraying time were retained in the final linear regression model as determinants of TCPy. Conclusions: The results suggest that CYP2B6*6 gene polymorphisms may play an important role in influencing susceptibility to CPF exposure. CYP2B6*6 gene polymorphisms together with CEL, smoking habits, body mass index, and spraying time were the determinants of urinary TCPy concentrations, as a biomarker of CPF toxicity.

Identification and Heterologous Expression of a ${\Delta}4$-Fatty Acid Desaturase Gene from Isochrysis sphaerica

  • Guo, Bing;Jiang, Mulan;Wan, Xia;Gong, Yangmin;Liang, Zhuo;Hu, Chuanjiong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1413-1421
    • /
    • 2013
  • The marine microalga Isochrysis sphaerica is rich in the very-long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (EPA, $C20:5{\omega}-3$) and docosahexaenoic acid (DHA, $C22:6{\omega}-3$) that are important to human health. Here, we report a functional characterization of a ${\Delta}4$-fatty acid desaturase gene (FAD4) from I. sphaerica. IsFAD4 contains a 1,284 bp open reading frame encoding a 427 amino acid polypeptide. The deduced amino sequence comprises three conserved histidine motifs and a cytochrome b5 domain at its N-terminus. Phylogenetic analysis indicated that IsFad4 formed a unique Isochrysis clade distinct from the counterparts of other eukaryotes. Heterologous expression of IsFAD4 in Pichia pastoris showed that IsFad4 was able to desaturate docosapentaenoic acid (DPA) to form DHA, and the rate of converting DPA to DHA was 79.8%. These results throw light on the potential industrial production of specific polyunsaturated fatty acids through IsFAD4 transgenic yeast or oil crops.

Microarray Analysis of the Gene Expression Profile in Diethylnitrosamine-induced Liver Tumors in Mice

  • Jung Eun-Soo;Park Jung-Duck;Ryu Doug-Young
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.4
    • /
    • pp.134-142
    • /
    • 2005
  • Liver cancer is a leading cause of tumor-related mortality, Diethylnitrosamine (DEN) is one of the most extensively studied hepatic carcinogens to date. In this study, the mRNA expression profile in DEN-induced liver tumors in mice was analyzed using DNA microarrays. We report increased expression of genes that participate in hypoxia response, including metallothionein 1 (Mt1), metallothionein 2 (Mt2), fatty acid synthase (Fasn), transferrin (Trf), adipose differentiation-related Protein (AdfP) and ceruloplasmin (CP), as well as those involved in predisposition and development of cancers, such as cytochrome P450 2A5 (Cyp2a5), alpha 2-HS-glycoprotein (Ahsg) and Jun-B oncogene (Junb). The hepatic iron regulatory peptide, hepcidin (Hampl), was downregulated in DEN-stimulated liver tumors. Expression of tumor suppressor genes, such as tripartite motif protein 13 (Trim13), was decreased under these conditions. The data collectively indicate that DEN-induced tumor development can be exploited as a possible model for liver cancer, since this process involves various genes with important functions in hepatic carcinogenesis.

  • PDF

Pharmacokinetic Interaction between Nisoldipine and Repaglinide in Rats

  • Choi, In;Choi, Dong-Hyun;Yeum, Cheul-Ho;Choi, Jun-Shik
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.498-503
    • /
    • 2011
  • The purpose of this study was to investigate the effects of nisoldipine on the pharmacokinetics of repaglinide in rats. The effect of nisoldipine on cytochrome P450 (CYP) 3A4 activity and P-glycoprotein (P-gp) were evaluated. The pharmacokinetic parameters of repaglinide were also determined in rats after oral (0.5 $mg{\cdot}kg^{-1}$) and intravenous (0.2 $mg{\cdot}kg^{-1}$) administration of repaglinide to rats without or with nisoldipine (0.3 and 1.0 $mg{\cdot}kg^{-1}$). Nisoldipine inhibited CYP3A4 enzyme activity with a 50% inhibition concentration of 5.5 ${\mu}M$. In addition, nisoldipine significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared to the oral control group, nisoldipine significantly increased the $AUC_{0-{\infty}}$ and the $C_{max}$ of repaglinide by 46.9% and 24.9%, respectively. Nisoldipine also increased the absolute bioavailability (A.B.) of repaglinide by 47.0% compared to the oral control group. Moreover, the relative bioavailability (R.B.) of repaglinide was 1.16- to 1.47-fold greater than that of the control group. Nisoldipine enhanced the oral bioavailability of repaglinide, which may be attributable to the inhibition of the CYP3A4-mediated metabolism in the small intestine and/or in the liver and to inhibition of P-gp in the small intestine rather than to reduction of renal elimination of repaglinide by nisoldipine. The increase in the oral bioavailability of repaglinide should be taken into consideration of potential drug interactions when co-administering repaglinide and nisoldipine.

Analysis of Mitochondrial Gene Sequence in Etoxazole Resistant Two-Spotted Spider Mite, Tetranychus urticae (Etoxazole 저항성 점박이응애의 미토콘드리아 유전자 서열 분석)

  • Park, Sang-Eun;Koo, Hyun-Na;Yoon, Chang-Mann;Choi, Jang-Jeon;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is one of the most important pest species devastating many horticultural and ornamental crops and fruit trees. Difficulty in managing this mite is largely attributed to its ability to develop resistance to many important acaricides. Development of 3,700-folds resistance to etoxazole was found in the population of T. urticae collected from rose greenhouses in Buyeo, Chungnam Province in August 2000. This population has been selected for eleven years with etoxazole (over 500 times), and increased over 5,000,000-folds in resistance as compared with susceptible strain. Also, etoxazole-resistant strain was shown to be maternally inherited. The objective of this study was to determine whether resistance of T. urticae to etoxazole was linked with point mutations in the mitochondrial gene. DNA sequencing of cytochrome c oxidase subunit I (COX1), COX2, COX3, cytochrome b (CYTB), NADH dehydrogenase subunit 1 (ND1), ND2, ND3, ND4, ND5, and ND6 were analyzed by comparing two etoxazole-susceptible and etoxazole-resistant strains. As a result, differences were not detected between the nucleotide sequences of two strains within a mitochondrial gene.

Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5

  • Kim, Shin-Jung;Kim, An Keun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.125-134
    • /
    • 2015
  • Background: Black ginseng (Ginseng Radix nigra, BG) refers to the ginseng steamed for nine times and fine roots (hairy roots) of that is called fine black ginseng (FBG). It is known that the content of saponin of FBG is higher than that of BG. Therefore, in this study, we examined antitumor effects against MCF-7 breast cancer cells to target the FBG extract and its main component, ginsenoside Rg5 (Rg5). Methods: Action mechanism was determined by MTT assay, cell cycle assay and western blot analysis. Results: The results from MTT assay showed that MCF-7 cell proliferation was inhibited by Rg5 treatment for 24, 48 and 72 h in a dose-dependent manner. Rg5 at different concentrations (0, 25, 50 and $100{\mu}M$), induced cell cycle arrest in G0/G1 phase through regulation of cell cycle-related proteins in MCF-7 cells. As shown in the results from western blot analysis, Rg5 increased expression of p53, $p21^{WAF1/CIP1}$ and $p15^{INK4B}$ and decreased expression of Cyclin D1, Cyclin E2 and CDK4. Expression of apoptosiserelated proteins including Bax, PARP and Cytochrome c was also regulated by Rg5. These results indicate that Rg5 stimulated cell apoptosis and cell cycle arrest at G0/G1 phase via regulation of cell cycle-associated proteins in MCF-7 cells. Conclusion: Rg5 promotes breast cancer cell apoptosis in a multi-path manner with higher potency compared to 20(S)-ginsenoside Rg3 (Rg3) in MCF-7 (HER2/ER+) and MDA-MB-453 (HER2+/ER) human breast cancer cell lines, and this suggests that Rg5 might be an effective natural new material in improving breast cancer.

Mitochondrial Genetic Diversity and Phylogenetic Relationships of Siberian Flying Squirrel(Pteromys volans) Populations

  • Lee, Mu-Yeong;Park, Sun-Kyung;Hong, Yoon-Jee;Kim, Young-Jun;Voloshina, Inna;Myslenkov, Alexander;Saveljev, Alexander P.;Choi, Tae-Young;Piao, Ren-Zhu;An, Jung-Hwa;Lee, Mun-Han;Lee, Hang;Min, Mi-Sook
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.269-277
    • /
    • 2008
  • Siberian flying squirrel, an endangered species in South Korea, is distributed through major mountain regions of South Korea. The number of Siberian flying squirrel(Pteromys volans) in South Korea has decreased and their habitats are fragmented and isolated because of anthropogenic activities. So far no molecular genetic data has, however, been available for their conservation and management. To obtain better information concerning genetic diversity and phylogenetic relationships of the Siberian flying squirrel in South Korea, we examined 14 individuals from South Korea, 7 individuals from Russia, and 5 individuals from northeastern China along with previously published 29 haplotypes for 1,140 bp of the mtDNA cytochrome b gene. The 14 new individuals from South Korea had 7 haplotypes which were not observed in the regions of Russia and Hokkaido. The level of genetic diversity(0.616%) in the South Korean population was lower than that in eastern Russia(0.950%). The geographical distribution of mtDNA haplotypes and reduced median network confirmed that there are three major lineages of Siberian flying squirrel, occupying; Far Eastern, northern Eurasia, and the island of Hokkaido. The South Korean population only slightly distinct from the Eurasia, and eastern Russian population, and is part of the lineage Far Eastern. Based on these, we suggest that the South Korean population could be considered to belong to one partial ESU(Far Eastern) of three partial ESUs but a different management unit. However, the conservation priorities should be reconfirmed by nuclear genetic marker and ecological data.

Genetic Species Identification by Sequencing Analysis of Nuclear and Mitochondrial Genes for Albino Misgurnus Species from Korea (우리나라 미꾸리속(genus Misgurnus) 알비노 개체의 미토콘드리아 및 핵 유전자 염기서열 분석에 의한 유전적 동정)

  • Song, Ha-Youn;Moon, Shin-Joo;Kim, Keun-Sik;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.29 no.2
    • /
    • pp.139-145
    • /
    • 2017
  • The spontaneous color mutant, albino individuals of genus Misgurnus, are rarely discovered in Korea and there are difficult to identify morphological species due to lack melanin pigmentation. In this study, we developed a genetic identification method for the species of albino Misgurnus individuals based on phylogenetic analysis by using recombination activating gene 1 (rag1) and cytochrome b (cytb) region of mitochondrial DNA. As a result of molecular phylogenetic analysis, three clades were identified as Misgurnus mizolepis, M. anguillicaudatus and M. mohoity. The homology of the cytb sequences of M. mohoity was best match to that of M. mohoity sequences in GenBank database. As a result of species identification of 25 albino Misgurnus individuals based on the phylogenetic tree, the red-eye type was identified as 16 M. anguillicaudatus and one M. mizolepis. The remaining three individuals were identified as one M. mizolepis ♀${\times}$M. anguillicaudatus ♂, and two M. mohoity ♀${\times}$M. anguillicaudatus ♂, respectively. In addition, the five black-eye type individuals were identified as one M. anguillicaudatus, three M. mizolepis and one M. mohoity. Therefore, this genetic identification method will be an useful techniques for species or hybrid identification in genus Misgurnus.