• Title/Summary/Keyword: cytochrome

Search Result 2,133, Processing Time 0.025 seconds

Effects of oxypeucedanin hydrate isolated from Angelica dahurica on myoblast differentiation in association with mitochondrial function (백지에서 추출한 oxypeucedanin hydrate의 미토콘드리아 기능 관련 근생성 효과)

  • Eun-Ju Song;Ji-Won Heo;Jee Hee Jang;Yoon-Ju Kwon;Yun Hee Jeong;Min Jung Kim;Sung-Eun Kim
    • Journal of Nutrition and Health
    • /
    • v.57 no.1
    • /
    • pp.53-64
    • /
    • 2024
  • Purpose: Mitochondria play a crucial role in preserving skeletal muscle mass, and damage to mitochondria leads to muscle mass loss. This study investigated the effects of oxypeucedanin hydrate, a furanocoumarin isolated from Angelica dahurica radix, on myogenesis and mitochondrial function in vitro and in zebrafish models. Methods: C2C12 myotubes cultured in media containing 0.1, 1, 10, or 100 ng/mL oxypeucedanin hydrate were immunostained with myosin heavy chain (MHC), and then multinucleated MHC-positive cells were counted. The expressions of markers related to muscle differentiation, muscle protein degradation, and mitochondrial function were determined by quantitative reverse transcription polymerase chain reaction. To investigate the effects of oxypeucedanin hydrate on mitochondrial dysfunction, Tg(Xla.Eef1a1:mito-EGFP) zebrafish embryos were treated with 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) with or without oxypeucedanin hydrate and analyzed for mito-EGFP intensity and mitochondrial length. Results: Oxypeucedanin hydrate significantly increased MHC-positive multinucleated myotubes (≥ 3 nuclei) and increased the expression of the myogenic marker myosin heavy chain 4. However, it decreased the expressions of muscle-specific RING finger protein 1 and muscle atrophy f-box (markers of muscle protein degradation). Furthermore, oxypeucedanin hydrate enhanced the expressions of markers of mitochondrial biogenesis (peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, transcription factor a mitochondrial, succinate dehydrogenase complex flavoprotein subunit A, and cytochrome c oxidase subunit 1) and mitochondrial fusion (optic atrophy 1). However, it reduced the expression of dynamin-related protein 1 (a mitochondrial fission regulator). Consistently, oxypeucedanin hydrate reduced FOLFIRI-induced mitochondrial dysfunction in the skeletal muscles of zebrafish embryos. Conclusion: The study indicates that oxypeucedanin hydrate promotes myogenesis by improving mitochondrial function, and thus, suggests oxypeucedanin hydrate has potential use as a nutritional supplement that improves muscle mass and function.

A Case-Control Study on Effects of Genetic Polymorphisms of GSTM1, GSTT1, CYP1A1 and CYP2E1 on Risk of Lung Cancer (GSTM1과 GSTT1, 그리고 CYP1A1, CYP2E1 다형성이 폐암발생에 미치는 영향에 대한 환자-대조군연구)

  • Nan, Hong-Mei;Kang, Jong-Won;Bae, Jang-Whan;Choe, Kang-Hyeon;Lee, Ki-Hyeong;Kim, Seung-Taik;Won, Choong-Hee;Kim, Yong-Min;Kim, Heon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.2
    • /
    • pp.123-129
    • /
    • 1999
  • Objectives: This study was performed to investigate sweets of genetic polymorphisms of glutathione S-transferase M1 (GSTM1), glutathione S-transferase M1 (GSTT1), cytochrome P450 1A1 (CYP1A1) and cytoehrome P450 2E1 (CYP2E1) on lung cancer development. Methods: Ninety-eight lung cancer patients and 98 age-sex matched non-cancer patients hospitalized in Chungbuk National University Hospital form March 1997 to August 1998, were the subjects of this case-control study. Direct interview was done and genotypes of GSTM1, GSTT1, CYP1A1 and CYP2E1 were investigated using multiplex PCR or PCR-RFLP methods with DNA extracted from venous blood. Effects of the polymorphisms of GSTM1, GSTT1, CYP1A1 and CYP2E1, lifestyle factors including smoking, and their interactions on lung rancor were statistically analyzed. Results: GSTM1 was deleted in 67.01% of the cases and 58.16% of the controls, and the odds ratio(95% CI) was 1.46(0.82-2.62). GSTT1 deletion was 58.76% for the lung cancer patients and 50.00% for the controls[OR:1.43(0.81-2.51)]. The frequencies of lle/lle, lle/Val and Val/Val of the CYP1A1 polymorphisms were 59.18-18%, 35.71%, and 5.10% for the cases, and 52.04%, 45.92%, 2.04% for the controls, respectively. Risk of lung cancer was not associated with polymorphism of CYP1A1 ($x^2trend=0.253$, p-value>0.05). The respective frequency of c1/c1 c1/c2, c2/c2 genotypes for CYP2E1 were 50.00%, 42.86%, 7.14% for the lung cancer patients, and 66.33%, 30.61%, 3.06% for the controls $(x^2trend=5.783,\;p<0.05)$. c2 allele was a significant risk factor for lung cancer. We also observed a significant association of cigarette smoking history with lung cancer risk. The odds ratio(95% Cl) of cigarette smoking was 3.03(1.58-5.81). In multiple logistic analysis including genotypes of GSTM1, GSTT1, CYP1A1 and CYP2E1, and smoking habit, only snaking habit came out to be a significant risk factor for lung cancer. Conclusion: Genetic polymorphisms of GSTM1, GSTT1, CYP1A1 and CYP2E1 are not so strongly associated with lung cancer as lifestyle factors including cigarette smoking.

  • PDF

Effects of NG-monomethyl-L-arginine and L-arginine on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion after cerebral hypoxia-ischemia in newborn piglets (급성 저산소성 허혈성 뇌손상이 유발된 신생자돈에서 재산소-재관류기 동안 NG-monomethyl-L-arginine과 L-arginine이 뇌의 혈역학 및 에너지 대사에 미치는 영향)

  • Ko, Sun Young;Kang, Saem;Chang, Yun Sil;Park, Eun Ae;Park, Won Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.3
    • /
    • pp.317-325
    • /
    • 2006
  • Purpose : This study was carried out to elucidate the effects of nitric oxide synthase(NOS) inhibitor, NG-monomethyl-L-arginine(L-NMMA) and nitric oxide precursor, L-arginine(L-Arg) on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion(RR) after hypoxia-ischemia(HI) in newborn piglets. Methods : Twenty-eight newborn piglets were divided into 4 groups; Sham normal control(NC), experimental control(EC), L-NMMA(HI & RR with L-NMMA), and L-Arg(HI & RR with L-Arg) groups. HI was induced by occlusion of bilateral common carotid arteries and simultaneously breathing with 8 percent oxygen for 30 mins, and followed RR by release of carotid occlusion and normoxic ventilation for one hour. All groups were monitored with cerebral hemodynamics and cytochrome $aa_3$ (Cyt $aa_3$) using near infrared spectroscopy(NIRS). $Na^+$, $K^+$-ATPase activity, lipid peroxidation products, and tissue high energy phosphate levels were determined biochemically in the cerebral cortex. Results : In experimental groups, mean arterial blood pressure, $PaO_2$, and pH decreased, and base excess and blood lactate level increased after HI compared to NC group(P<0.05). These variables subsequently returned to baseline after RR except pH. There were no differences among the experimental groups. In NIRS, oxidized hemoglobin($HbO_2$) decreased and hemoglobin(Hb) increased during HI(P<0.05) but returned to base line immediately after RR; 40 min after RR, the $HbO_2$ had decreased significantly compared to NC group(P<0.05). Changes of Cyt $aa_3$ decreased significantly compared to NC after HI and recovered at the end of the experiment. Significantly reduced cerebral cortical cell membrane $Na^+$, $K^+$-ATPase activity and increased lipid peroxidation products(P<0.05) were not improved with L-NMMA or L-Arg. Conclusion : These findings suggest that NO is not involved in the mechanism of HI and RR brain damage during the early acute phase of RR.