• Title/Summary/Keyword: cytidine methyltransferase

Search Result 2, Processing Time 0.017 seconds

Identification of a Sequence Containing Methylated Cytidine in Corynebacterium glutamicum and Brevibacterium flavum Using Bisulfite DNA Derivatization and Sequencing

  • Jang, Ki-Hyo;Chambers, Paul J.;Britz, Margaret L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.819-824
    • /
    • 2001
  • The principal DNA modification systems of the amino-acid-producing bacteria Corynebacterium glutamicum AS019, Brevibacterium flavum BF4, and B. lactofermentum BL1 was investigated using two approaches; digestion of plasmid DNA isolated from these species TseI and Fnu4HI, and sequence analysis of the putative methyltransferase target sites following the derivatization of DNA using metabisulfite treatment. The C. glutamicum and B. flavum strains showed similar digestion patterns to the two enzymes, indicating that the target for cytidine methyltransferase recognizes 5'-GCSGC-3'(where S is either G or C). Mapping the methylated cytidine sites by bisulfite derivatization, followed by PCR amplification and sequencing, was only possible when the protocol included an additional step eliminating any underivatized DNA after PCR amplification, thereby indicating that the derivatization was not $100\%$ efficient. This may have been due to the high G0C content of this genus. It was confirmed that C. glutamicum AS019 and B. flavum BF4 methylated the cytidine in the $Gm^5CCGC$ sequences, yet there were no similar patterns of methylation in B. lactofermentum, which was consistent with the distinctive degradation pattern seen for the above enzymes. These findings demonstrate the successful application of a modified bisulfite derivatization method with the Corynebacterium species for determining methylation patterns, and showed that different species in the geneus contain distinctive restriction and modification systems.

  • PDF

Euchromatin histone methyltransferase II (EHMT2) regulates the expression of ras-related GTP binding C (RRAGC) protein

  • Hwang, Supyong;Kim, Soyoung;Kim, Kyungkon;Yeom, Jeonghun;Park, Sojung;Kim, Inki
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.576-581
    • /
    • 2020
  • Dimethylation of the histone H3 protein at lysine residue 9 (H3K9) is mediated by euchromatin histone methyltransferase II (EHMT2) and results in transcriptional repression of target genes. Recently, chemical inhibition of EHMT2 was shown to induce various physiological outcomes, including endoplasmic reticulum stress-associated genes transcription in cancer cells. To identify genes that are transcriptionally repressed by EHMT2 during apoptosis, and cell stress responses, we screened genes that are upregulated by BIX-01294, a chemical inhibitor of EHMT2. RNA sequencing analyses revealed 77 genes that were upregulated by BIX-01294 in all four hepatic cell carcinoma (HCC) cell lines. These included genes that have been implicated in apoptosis, the unfolded protein response (UPR), and others. Among these genes, the one encoding the stress-response protein Ras-related GTPase C (RRAGC) was upregulated in all BIX-01294-treated HCC cell lines. We confirmed the regulatory roles of EHMT2 in RRAGC expression in HCC cell lines using proteomic analyses, chromatin immune precipitation (ChIP) assay, and small guide RNA-mediated loss-of-function experiments. Upregulation of RRAGC was limited by the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), suggesting that ROS are involved in EHMT2-mediated transcriptional regulation of stress-response genes in HCC cells. Finally, combined treatment of cells with BIX-01294 and 5-Aza-cytidine induced greater upregulation of RRAGC protein expression. These findings suggest that EHMT2 suppresses expression of the RRAGC gene in a ROS-dependent manner and imply that EHMT2 is a key regulator of stress-responsive gene expression in liver cancer cells.