• 제목/요약/키워드: cyp3a4 inhibitors

검색결과 13건 처리시간 0.022초

심혈관질환약물과 향정신성약물의 약물상호작용 (Drug Interactions between Cardiovascular Agents and Psychotropic Drugs)

  • 박주언;정경희
    • 정신신체의학
    • /
    • 제19권2호
    • /
    • pp.57-65
    • /
    • 2011
  • 많은 심혈관질환약물과 향정신성약물 간에 다양한 약물상호작용이 존재하며 이러한 약물들의 대부분이 시트크롬(cytochrome, CYP)450 효소의 기질, 억제제, 유도제로 작용하면서 약물상호작용이 일어나게 된다. 주로 CYP2D6와 CYP3A4를 억제하는 향정신성약물로 인해 같이 투여되는 심혈관질환약물의 효과가 변할 수 있고 부작용까지 나타날 수 있다. 이런 상황을 고려하고 반대의 경우도 포함하여 흔히 처방되는 두 종류의 약물을 병용 투여하는 경우 고려해야 할 부분에 대해서 심혈관질환약물 분류에 따라 논하였다. 대부분의 베타차단제는 CYP2D6의 대사에 의존하므로 이 대사를 억제하는 bupropion, chlorpromazine, haloperidol, SSRIs, quinidine 등을 사용했을 때 베타차단제의 독성이 나타날 수 있다. 앤지오텐신 관련 약물과 이뇨제가 lithium의 농도를 변화시키는 점도 고려하여야 한다. 칼슘통로차단제 및 콜레스테롤강하제를 CYP3A4의 강력한 억제제인 amiodarone, diltiazem, fluvoxamine, nefazodone, verapamil 등과 함께 사용하였을 때 약물 상호작용에 따른 부작용에 유의하여야 한다. 항부정맥제를 복용하는 환자에서 QT 간격 증가를 야기하는 약물이나 관련 CYP450 효소를 억제하는 약물을 동시에 투여하는 것은 삼가거나 적극적인 관찰이 필요하다. Digoxin과 warfarin이 병용 투여되는 향정신성약물로 인해 혈중 농도가 변하는 것도 임상적으로 중요하다.

  • PDF

CYP3A4 기질과 억제제 약물의 병용 고령환자에서 부정맥 부작용 연관성 (Association of Arrhythmia in the Elderly Patients on Combination Therapy of CYP3A4 Substrates and Inhibitors with the Korean Claims Data)

  • 김태우;장준혁;추은정;박래웅;이숙향
    • 한국임상약학회지
    • /
    • 제33권4호
    • /
    • pp.242-253
    • /
    • 2023
  • Background: Arrhythmia due to QT prolongation is one of the most serious adverse events with drug interactions in the elderly. This study aimed to examine the incidence of arrhythmia in Korean elderly patients who administered both cytochrome P450 3A4 (CYP3A4) substrates and inhibitors. Methods: Patients using CYP3A4 substrate and inhibitor were selected from the 2017 elderly patient dataset (the Korean Health Insurance Review and Assessment Service - Aged Population Sample). Selection criteria were patients with a medication possession ratio over 80%, medication duration of at least 7 days, and a follow-up period of 3 months or more. The patient's basic information is age, gender, health insurance type, and comorbidities. The top 50 drug pairs and comorbidity with high-incidence arrhythmia were presented. Results: In patients with drug combinations for over 7 days, there were 981 incidences of arrhythmia, and 351 incidences in those with combinations for over 30 days. The comorbidities of congestive heart failure and myocardial infarction had a significant association with incidence of arrhythmia. Among patients with 7 days or longer, the drug pairs [substrates-inhibitors] with significant adjusted odds ratio (aOR) were [propranolol-cimetidine] (aOR, 2.25; 95% confidence interval [CI], 1.66-3.04). Among patients with 30 days or longer, the drug pairs with significant aOR were [tramadol-amiodarone] (aOR, 2.87; 95% CI, 1.97-4.19). Conclusions: In elderly patients, the incidence of arrhythmia was high with drug interactions of CYP3A4 substrates and inhibitors. The comorbidity of congestive heart failure was the risk factor.

Histone Deacetylase Inhibitor Stimulate CYP3A4 Proximal Promoter Activity in HepG2 Cells

  • Kim Ja Young;Ahn Mee Ryung;Kim Dae-Kee;Sheen Yhun Yhong
    • Archives of Pharmacal Research
    • /
    • 제27권4호
    • /
    • pp.407-414
    • /
    • 2004
  • The expression of CYP3A4 gene is induced by a variety of structurally unrelated xenobiotics including the antibiotic rifampicin, pregnenolone 16-carbonitrile (PCN), and endogenous hormones, that might mediate through steroid and xenobiotic receptor (SXR) system. The molecular mechanisms underlying regulation of CYP3A4 gene expression have not been understood. In order to gain the insight of the molecular mechanism of CYP3A4 gene expression, study has been undertaken to investigate if the histone deacetylation is involved in the regulation of CYP3A4 gene expression by proximal promoter in human hepatoma HepG2 cells. Also we have investigated to see if SXR is involved in the regulation of CYP3A4 proximal promoter activity in human hepatoma HepG2 cells. HepG2 cells were transfected with a plasmid PCYP3A4-Luc containing ${\~}1kb$ of the CYP3A4 proximal promoter region (-863 to +64 bp) in front of a reporter gene, luciferase, in the presence or absence of pSAP-SXR. In HepG2 cells, CYP3A4 inducers, such as rifampicin, PCN and RU486 showed minimal stimulation of CYP3A4 proximal promoter activity in the absence of SXR and histone deacetylase (HDAC) inhibitors. 4-Dimethylamino-H-[4-(2-hydroxycarbamoylvinyl)benzyl]benzamide (IN2001), a new class HDAC inhibitor significantly increased CYP3A4 proximal promoter activity over untreated control cells and rifampicin concomitant treatment with IN2001 increased further CYP3A4 proximal promoter activity that was stimulated by IN2001 The results of this study demon-strated that both HDAC inhibitors and SXR are essential to increase of CYP3A4 proximal promoter activity by CYP3A4 inducers such as PCN, rifampicin, and RU486. Especially SXR seems to be important for the dose dependent response of CYP3A4 inducing chemicals to stimulate CYP3A4 proximal promoter activity. Also this data suggested that HDAC inhibitors seemed to facilitate the CYP3A4 proximal promoter to be activated by chemicals.

Inhibition of Carcinogen-Activating Cytochrome P450 Enzymes by Xenobiotic Chemicals in Relation to Antimutagenicity and Anticarcinogenicity

  • Shimada, Tsutomu
    • Toxicological Research
    • /
    • 제33권2호
    • /
    • pp.79-96
    • /
    • 2017
  • A variety of xenobiotic chemicals, such as polycyclic aromatic hydrocarbons (PAHs), aryl- and heterocyclic amines and tobacco related nitrosamines, are ubiquitous environmental carcinogens and are required to be activated to chemically reactive metabolites by xenobiotic-metabolizing enzymes, including cytochrome P450 (P450 or CYP), in order to initiate cell transformation. Of various human P450 enzymes determined to date, CYP1A1, 1A2, 1B1, 2A13, 2A6, 2E1, and 3A4 are reported to play critical roles in the bioactivation of these carcinogenic chemicals. In vivo studies have shown that disruption of Cyp1b1 and Cyp2a5 genes in mice resulted in suppression of tumor formation caused by 7,12-dimethylbenz[a]anthracene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, respectively. In addition, specific inhibitors for CYP1 and 2A enzymes are able to suppress tumor formation caused by several carcinogens in experimental animals in vivo, when these inhibitors are applied before or just after the administration of carcinogens. In this review, we describe recent progress, including our own studies done during past decade, on the nature of inhibitors of human CYP1 and CYP2A enzymes that have been shown to activate carcinogenic PAHs and tobacco-related nitrosamines, respectively, in humans. The inhibitors considered here include a variety of carcinogenic and/or non-carcinogenic PAHs and acethylenic PAHs, many flavonoid derivatives, derivatives of naphthalene, phenanthrene, biphenyl, and pyrene and chemopreventive organoselenium compounds, such as benzyl selenocyanate and benzyl selenocyanate; o-XSC, 1,2-, 1,3-, and 1,4-phenylenebis(methylene)selenocyanate.

한약재의 Cytochrome P450 결합관련 안전성에 관한 연구 (A Study on the Affinity of Some Medicinal Herbs to Two Cytochrome P450 Subfamilies, CYP3A4 and CYP2D6)

  • 유다영;우홍정;김영철
    • 대한한방내과학회지
    • /
    • 제34권4호
    • /
    • pp.375-383
    • /
    • 2013
  • Objectives : This study was performed to investigate the metabolic site of some medicinal herbs in the liver associated with CYP (Cytochrome P450). Methods : Cytochrome P450 is the major enzymes involved in drug metabolism and bioactivation. CYP3A4 and CYP2D6, the major CYP isoforms in humans, catalyse the major proportion of drugs available on the market. Scintillation proximity assay (SPA) is often used in studies to identify compounds that inhibit CYP3A4 and CYP2D6. 28 herbal extracts and radioisotopes were attached competitively to SPA beads, and followed by measuring the remaining radioisotopes in the medium. Erythromycin and dexamethasone, inhibitors of CYP3A4 and CYP2D6, were used as controls respectively. Results : Most of the 28 herbal extracts showed dose-dependent affinity to the CYP3A4 while some of the herbs showed affinity to the CYP2D6. Conclusions : These results suggest that most of the 28 herbal extracts are metabolized safely in the liver, combined with CYP3A4 and CYP2D6.

Cytochrome P450 2C8 and CYP3A4/5 are Involved in Chloroquine Metabolism in Human Liver Microsomes

  • Kim, Kyoung-Ah;Park, Ji-Young;Lee, Ji-Suk;Lim, Sabina
    • Archives of Pharmacal Research
    • /
    • 제26권8호
    • /
    • pp.631-637
    • /
    • 2003
  • Chloroquine has been used for many decades in the prophylaxis and treatment of malaria. It is metabolized in humans through the N-dealkylation pathway, to desethylchloroquine (DCQ) and bisdesethylchloroquine (BDCQ), by cytochrome P450 (CYP). However, until recently, no data are available on the metabolic pathway of chloroquine. Therefore, the metabolic pathway of chloroquine was evaluated using human liver microsomes and cDNA-expressed CYPs. Chloroquine is mainly metabolized to DCQ, and its Eadie-Hofstee plots were biphasic, indicating the involvement of multiple enzymes, with apparent $K_m and V_{max}$ values of 0.21 mM and 1.02 nmol/min/mg protein 3.43 mM and 10.47 nmol/min/mg protein for high and low affinity components, respectively. Of the cDNA-expressing CYPs examined, CYP1A2, 2C8, 2C19, 2D6 and 3A4/5 exhibited significant DCQ formation. A study using chemical inhibitors showed only quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4/5 inhibitor) inhibited the DCQ formation. In addition, the DCQ formation significantly correlated with the CYP3A4/5-catalyzed midazolam 1-hydroxylation (r=0.868) and CYP2C8-catalyzed paclitaxel 6$\alpha$-hydroxylation (r = 0.900). In conclusion, the results of the present study demonstrated that CYP2C8 and CYP3A4/5 are the major enzymes responsible for the chloroquine N-deethylation to DCQ in human liver microsomes.

디젤분진이 체세포에서의 DNA 손상에 미치는 영향 (Genotoxic Effects of Diesel Exhaust Particle Extract in NIH/3T3 Cells)

  • 허찬;김남이;정규혁;문창규;허문영
    • Environmental Analysis Health and Toxicology
    • /
    • 제19권4호
    • /
    • pp.335-344
    • /
    • 2004
  • Diesel exhaust particle (<2.5 ${\mu}{\textrm}{m}$, DEP$_{2.5}$) is known to be probarbly carcinogenic (IARC group 2A). DEP$_{2.5}$ contains organic compounds such as polycyclicaromatic hydrocarbon (PAH), heterocyclic compounds, phenols, and nitroarenes. Reactive oxygen species (ROS) are generated by DEP$_{2.5}$ without any biological activation system. Therefore, an alternative mechanism by which DEP$_{2.5}$ could be carcinogenic is known by the generation of oxidative DNA damage. The aim of this study was to investigate genotoxic effects of DEP$_{2.5}$ using single cell gel electrophoresis. In order to evaluate the mechanisms of DEP$_{2.5}$ genotoxicity, the rat micro-some mediated and DNA repair enzyme treated comet assays together with routine comet assay were performed. DEP$_{2.5}$ was collected from diesel engine bus and dichloromethane extract was obtained. The organic extract of DEP$_{2.5}$ revealed DNA damage itself in NIH/3T3 cells. And it showed both oxidative and microsome mediated DNA damages. Vitamin C as an model antioxidant reduced DNA damage in endonuclase III treated comet assay. One of flavonoid, galangin as a CYP1A1 inhibitor reduced DNA damage in the presence of S-9 mixture. Our results show that DEP$_{2.5}$ are genotoxic and a great source of oxidative stress, but antioxidants can significantly reduce oxidative DNA damages. And DEP$_{2.5}$ may contain indirect mutagens which can be inhibited by CYP inhibitors.d by CYP inhibitors.

Effects of the CYP2C19 Genetic Polymorphism on Gastritis, Peptic Ulcer Disease, Peptic Ulcer Bleeding and Gastric Cancer

  • Jainan, Wannapa;Vilaichone, Ratha-Korn
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10957-10960
    • /
    • 2015
  • Background: The CYP2C19 genotype has been found to be an important factor for peptic ulcer healing and H. pylori eradication, influencing the efficacy of proton pump inhibitors (PPIs) and the pathogenesis of gastric cancer. The aim of this study was to investigate clinical correlations of the CYP2C19 genotype in patients with gastritis, peptic ulcer disease (PUD), peptic ulcer bleeding (PUB) and gastric cancer in Thailand. Materials and Methods: Clinical information, endoscopic findings and H. pylori infection status of patients were assessed between May 2012 and November 2014 in Thammasat University Hospital, Thailand. Upper GI endoscopy was performed for all patients. Five milliliters of blood were collected for H. pylori serological diagnosis and CYP2C19 study. CYP2C19 genotypes were determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis (RFLP) and classified as rapid metabolizer (RM), intermediate metabolizer (IM) or poor metabolizer (PM). Results: A total of 202 patients were enrolled including 114 with gastritis, 36 with PUD, 50 with PUB and 2 with gastric cancer. Prevalence of CYP2C19 genotype was 82/202 (40.6%) in RM, 99/202 (49%) in IM and 21/202 (10.4%) in PM. Overall H. pylori infection was 138/202 patients (68.3%). H. pylori infection was demonstrated in 72% in RM genotype, 69.7% in IM genotype and 47.6% in PM genotype. Both gastric cancer patients had the IM genotype. In PUB patients, the prevalence of genotype RM (56%) was highest followed by IM (32%) and PM(12%). Furthermore, the prevalence of genotype RM in PUB was significantly greater than gastritis patients (56% vs 36%: p=0.016; OR=2.3, 95%CI=1.1-4.7). Conclusions: CYP2C19 genotype IM was the most common genotype whereas genotype RM was the most common in PUB patients. All gastric cancer patients had genotype IM. The CYP2C19 genotype RM might be play role in development of PUD and PUB. Further study in different population is necessary to verify clinical usefulness of CYP2C19 genotyping in development of these upper GI diseases.

인체 간 microsome에서 pentoxifylline 대사체 M-1의 시험관내 대사 (In vitro Metabolism of Pentoxifylline Metabolite M-l in Human Liver Microsomes)

  • 신혜순
    • 약학회지
    • /
    • 제43권6호
    • /
    • pp.834-842
    • /
    • 1999
  • The metabolism and pharmacokinetics of M-l, which is metabolite of pentoxifylline, have been studied in human liver microsomes. Biphasic kinetics was observed from the Eadie-Hofstee plot for the formation of both metabolites of M-l. For the kinetics of pentoxifylline, mean values of $V_{max1}{\;}and{\;}V_{max2}$ were 1,648 and 5,622 nmol/min/mg protein, and the estimated values of $K_{ml}{\;}and{\;}K_{m2}$ were 0.180 and 4.829 mM, respectively. For M-3, mean values of $V_{max1}{\;}and{\;}V_{max2}$ were 0.062 and 0.491 nmol/min/mg protein, and estimated values of $K_{ml}{\;}and{\;}K_{m2}$ were 0.025 and 1.216 mM. The formations of pentoxifylline and M-3 from M-1 were indentified by using several selective inhibitors of cytochrome P450 isoformes at 0.05-5 mM concentration of M-1 in human liver microsomes. For the analysis of low (0.05 mM) concentration of M-1, where the affinity was expected as low, indicated that CYPlA2 and CYP3A4 were major P450 isoforms responsible for pentoxifylline and M-3 formation. CYP3A4 and CYP2A6 appeared to be P450 isoforms responsible for M-3 formation at high (5 mM) concentration of M-1.

  • PDF

Effect of Allium sativum on cytochrome P450 and possible drug interactions

  • Janil, Ashutosh;Mehta, Anita A
    • Advances in Traditional Medicine
    • /
    • 제6권4호
    • /
    • pp.274-285
    • /
    • 2006
  • Allium sativum (Family Amaryllidaceae or Liliaceae) is used worldwide for various clinical uses like hypertension, cholesterol lowering effect, antiplatelets and fibrinolytic activity etc. Due to these common house hold uses of Allium sativum, as a herbal supplements, and failure of patients to inform their physician of the over-the-counter supplements they consume leads to drugnutrient interactions with components in herbal supplements. Today these types of interactions between a herbal supplement and clinically prescribed drugs are an increasing concern. In vitro studies indicated that garlic constituents modulated various CYP (cytochrome P450) enzymes. CYP 3A4 is abundantly present in human liver and small intestine and contributes to the metabolism of more than 50% of commonly used drugs including nifedipine, cyclosporine, erythromycin, midazolam, alprazolam, and triazolam. Extracts from fresh and aged garlic inhibited CYP 3A4 in human liver microsomes. The in vivo effects of garlic constituents are found to be species depended and the dosing regimen of garlic constituents appeared to influence the modulation of various CYP isoforms. Studies have indicated that the inhibition of various CYPs by organosulfur compounds from garlic was related to their structure also. Studies using in vitro, in vivo, animal and human models have indicated that various garlic constituents can be the substrates, inhibitors and or inducers of various CYP enzymes. The modulation of CYP enzyme activity and expression are dependent on the type and chemical structure of garlic constituents, dose regime, animal species and tissue, and source of garlic thus this review throws light on the possible herb drug interaction with the use of garlic.