• 제목/요약/키워드: cylindrical structures

검색결과 513건 처리시간 0.026초

ACE and WIND Observations of Torsional Alfven Waves in the Solar Wind

  • ;조경석;박영득;김연한
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.27.1-27.1
    • /
    • 2010
  • We examined variations of the solar wind magnetic fields which are characterized by smooth field rotations with time scales of 2-7 hours, and identified the existence of two classes of structures. One is a small-scale magnetic flux rope, and the other shows clear characteristics of Alfven waves. In this study, we attempted to clarify fundamental characteristics of the structure of the second class. We have found that the observed features are basically described by the cylindrical structure consisting of the uniform background field and the circular torsional wave field propagating along the background field. We performed the least-squares fitting analysis for the observed rotational variations with a simple model of the torsional Alfven wave as described above. The fitted results show satisfactory agreement with observations and thus allow us to determine the structure of the region occupied by the torsional Alfven wave. Furthermore, the examination of ACE and WIND observations reveals several cases in which two spacecrafts encountered the same structure at different position and different times. Comparison of such cases provides further evidence that the observed rotational field variations are due to the torsional Alfven waves, and not due to elliptically-polarized Alfven waves.

  • PDF

Laminate composites behavior under quasi-static and high velocity perforation

  • Yeganeh, E. Mehrabani;Liaghat, G.H.;Pol, M.H.
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.777-796
    • /
    • 2016
  • In this paper, the behavior of woven E-glass fabric composite laminate was experimentally investigated under quasi-static indentation and high velocity impact by flat-ended, hemispherical, conical (cone angle of $37^{\circ}$ and $90^{\circ}$) and ogival (CRH of 1.5 and 2.5) cylindrical perforators. Moreover, the results are compared in order to explore the possibility of extending quasi-static indentation test results to high velocity impact test results in different characteristics such as perforation mechanisms, performance of perforators, energy absorption, friction force, etc. The effects of perforator nose shape, nose length and nose-shank connection shapes were investigated. The results showed that the quasi-static indentation test has a great ability to predict the high velocity impact behavior of the composite laminates especially in several characteristics such as perforation mechanisms, perforator performance. In both experiments, the highest performance occurs for 2.5 CRH projectile and the lowest is related to blunt projectiles. The results show that sharp perforators indicate lower values of dynamic enhancement factor and the flat-ended perforator represents the maximum dynamic enhancement factor among other perforators. Moreover, damage propagation far more occurred in high velocity impact tests then quasi-static tests. The highest damage area is mostly observed in ballistic limit of each projectile which projectile deviation strongly increases this area.

The effects of grooves on wind characteristics of tall cylinder buildings

  • Yuan, Wei-bin;Yu, Nan-ting;Wang, Zhao
    • Wind and Structures
    • /
    • 제26권2호
    • /
    • pp.89-98
    • /
    • 2018
  • For most full-scale tall buildings the Reynolds number of a flow field around a circular cylinder under strong wind is usually greater than $2{\times}10^7$, which is difficult to achieve in most wind tunnel tests. To explore the wind characteristics of tall cylindrical buildings with equidirectional grooves from subcritical to transcritical flow ($6.6{\times}10^4{\leq}Re{\leq}3.3{\times}10^5$ and $9.9{\times}10^6{\leq}Re{\leq}7.2{\times}10^7$), wind tunnel tests and full-scale large eddy simulations were carried out. The results showed that the rectangular-grooves narrow the wake width due to the downstream movement of the separation point and the deeper grooves cause smaller mean and fluctuating pressure while the peak pressure is little affected. Furthermore, the grooves lead to lower frequency of vortex shedding but the Strouhal number remains at the range from 0.15 to 0.35. The drag coefficient of the cylinders with grooves was found to be 2~3 times as large as that of smooth cylinders.

Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory

  • Loghman, Abbas;Faegh, Reza K.;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.533-547
    • /
    • 2018
  • In this paper the time-dependent creep analysis of a thick-walled FG cylinder with finite length subjected to axisymmetric mechanical and thermal loads are presented. First order shear deformation theory (FSDT) is used for description of displacement components. Inner and outer temperatures and outer pressure are considered as thermo-mechanical loadings. Both thermal and mechanical loadings are assumed variable along the axial direction using the sinusoidal distribution. To find temperature distribution, two dimensional heat transfer equation is solved using the required boundary conditions. The energy method and Euler equations are employed to reach final governing equations of the cylinder. After determination of elastic stresses and strains, the creep analysis can be performed based on the Yang method. The results of this research indicate that the boundaries have important effects on the responses of the cylinder. The effect of important parameters of this analysis such as variable loading, non-homogeneous index of functionally graded materials and time of creep is studied on the behaviors of the cylinder.

Improved block-wise MET for estimating vibration fields from the sensor

  • Jung, Byung Kyoo;Jeong, Weui Bong;Cho, Jinrae
    • Structural Engineering and Mechanics
    • /
    • 제64권3호
    • /
    • pp.279-285
    • /
    • 2017
  • Modal expansion technique (MET) is a method to estimate the vibration fields of flexible structures by using eigenmodes of the structure and the signals of sensors. It is the useful method to estimate the vibration fields but has the truncation error since it only uses the limit number of the eigenmodes in the frequency of interest. Even though block-wise MET performed frequency block by block with different valid eigenmodes was developed, it still has the truncation error due to the absence of other eigenmodes. Thus, this paper suggested an improved block-wise modal expansion technique. The technique recovers the truncation errors in one frequency block by utilizing other eigenmodes existed in the other frequency blocks. It was applied for estimating the vibration fields of a cylindrical shell. The estimated results were compared to the vibration fields of the forced vibration analysis by using two indices: the root mean square error and parallelism between two vectors. These indices showed that the estimated vibration fields of the improved block-wise MET more accurately than those of the established METs. Especially, this method was outstanding for frequencies near the natural frequency of the highest eigenmode of each block. In other words, the suggested technique can estimate vibration fields more accurately by recovering the truncation errors of the established METs.

Field Application of the Slit Type Coastal Structures under Waves and Currents

  • Park, Sang-Gil;Kang, Sug-Jin;Kim, Kang-Min;Kim, Suk-Mun;Lee, Joong-Woo
    • 한국항해항만학회지
    • /
    • 제34권9호
    • /
    • pp.711-718
    • /
    • 2010
  • Redevelopment of the domestic small fishing ports is being started in earnest by applying the environmentally friendly technology in order to attract tourists. For the purpose of improving water quality in the harbor, selection of breakwater type might have the priority to secure calmness and stability. Therefore, this study is to determine the hydraulic characteristics of reflective ratio, installation efficiency and stability of the special type of blocks through the hydraulic model experiment. The results were introduced to analyze for the effect of infield construction work through numerical analysis. Gujora, a small fishing port in southern Korea, is affected by the waves of SSE, S, SSW direction and strong tidal currents. The results of applying cylindrical slit block show that stability of the blocks and harbor calmness were secured. Considering that the pass rate of a long period wave is still excellent, the primary objective of wave control and the secondary objective of improving water exchange are satisfied simultaneously.

Measurement of Effective Refractive Index of Anodic Aluminum Oxide Using a Prism Coupler

  • Gong, Su-Hyun;Cho, Y.H.;Stolz, Arnaud;Gokarna, Anisha;Dogheche, Elhadj;Ryu, Sang-Wan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.195-195
    • /
    • 2010
  • In recent years, Anodic aluminum oxide(AAO) has become popular and attractive materials. It can be easily fabricated and self-organized pore structures. It has been widely used as a biosensor membrane, photonic crystal for optical circuit and template for nanotube growth etc. In previous papers, the theory was developed that AAO shows anisotropic optical properties, since it has anisotropic structure with numerous cylindrical pores. It gives rise to the anisotropy of the refractive index called as birefringence. It can be used as conventional polarizing elements with high efficiency and low cost. Therefore, we would like to compare the theory and experimental results in this study. One method which can measure effective refractive index of thin film is the prism coupling technique. It can give accurate results fast and simply. Furthermore, we can also measure separately the refractive index with different polarization using polarization of the laser (TE mode and TM mode). We calculated the effective refractive index with effective medium approximations (EMAs) by pore size in the SEM image. EMAs are physical models that describe the macroscopic system as the homogeneous and typical method of all mean field theories.

  • PDF

Scanning Stereoscopic PIV for 3D Vorticity Measurement

  • SAKAKIBARA Jun;HORI Toshio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.1-13
    • /
    • 2004
  • A scanning stereo-PIV system was developed to measure the three-dimensional distribution of three-component velocity in a turbulent round jet. A laser light beam produced by a high repetition rate YLF pulse laser was expanded vertically by a cylindrical lens to form a laser light sheet. The light sheet is scanned in a direction normal to the sheet by a flat mirror mounted on an optical scanner, which is controlled by a programmable scanner controller. Two high-speed mega-pixel resolution C-MOS cameras captured the particle images illuminated by the light sheet, and stereoscopic PIV method was adopted to acquire the 3D-3C-velocity distribution of turbulent round jet in an octagonal tank filled with water. The jet Reynolds number was set at Re=1000 and the streamwise location of the measurement was fixed at approximately x = 40D. Time evolution of three-dimensional vortical structure, which is identified by vorticity, is visualized. It revealed that the existence of a group of hairpin-like vortex structures was quite evident around the rim of the shear layer of the jet. Turbulence statistics shows good agreement with the previous data, and divergence of a filtered (unfiltered) velocity vector field was $7\%\;(22\%)$ of root-me an-squared vorticity value.

  • PDF

Shielding effects and buckling of steel tanks in tandem arrays under wind pressures

  • Portela, Genock;Godoy, Luis A.
    • Wind and Structures
    • /
    • 제8권5호
    • /
    • pp.325-342
    • /
    • 2005
  • This paper deals with the buckling behavior of thin-walled aboveground tanks under wind load. In order to do that, the wind pressures are obtained by means of wind-tunnel experiments, while the structural non linear response is computed by means of a finite element discretization of the tank. Wind-tunnel models were constructed and tested to evaluate group effects in tandem configurations, i.e. one or two tanks shielding an instrumented tank. Pressures on the roof and on the cylindrical part were measured by pressure taps. The geometry of the target tank is similar in relative dimensions to typical tanks found in oil storage facilities, and several group configurations were tested with blocking tanks of different sizes and different separation between the target tank and those blocking it. The experimental results show changes in the pressure distributions around the circumference of the tank for half diameter spacing, with respect to an isolated tank with similar dimensions. Moreover, when the front tank of the tandem array has a height smaller than the target tank, increments in the windward pressures were measured. From the computational analysis, it seems that the additional stiffness provided by the roof prevents reductions in the buckling load for cases even when increments in pressures develop in the top region of the cylinder.

A finite element analysis of a new design of a biomimetic shape memory alloy artificial muscle

  • Jaber, Moez Ben;Trojette, Mohamed A.;Najar, Fehmi
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.479-496
    • /
    • 2015
  • In this work, a novel artificial circular muscle based on shape memory alloy (S.M.A.) is proposed. The design is inspired from the natural circular muscles found in certain organs of the human body such as the small intestine. The heating of the prestrained SMA artificial muscle will induce its contraction. In order to measure the mechanical work provided in this case, the muscle will be mounted on a silicone rubber cylindrical tube prior to heating. After cooling, the reaction of the rubber tube will involve the return of the muscle to its prestrained state. A finite element model of the new SMA artificial muscle was built using the software "ABAQUS". The SMA thermomechanical behavior law was implemented using the user subroutine "UMAT". The numerical results of the finite element analysis of the SMA muscle are presented to shown that the proposed design is able to mimic the behavior of a natural circular muscle.