• Title/Summary/Keyword: cylindrical structures

Search Result 511, Processing Time 0.027 seconds

The influences of coating components and structures on ink absorbency (도공층 조성 및 구조의 잉크흡수성에 대한 영향)

  • 곽상효;김진현
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04a
    • /
    • pp.7-16
    • /
    • 1999
  • The aim of this research was to evaluate the influences of coating components and structures on ink absorbency. The ink absorbency was measured as porosity, K&N ink absorption, gloss and ink set-off. In order to obtain the relationship between the coating structure and the ink absorbency, the binder level was adjusted and two types of pigments were examined. One of the pigments was known to make the porous coating structure and the other one had strong ink affinity. The effects of coating components were studied by applying six different types of latex and various additives . In this research, CLC(cylindrical laboratory coater) and Prufbau printability tester were used. It was found that the decreasing latex dosage and introducing porous pigment were effective solutions to increase ink absorbency. However, the ink absorbency could not be improved by applying the fine pigment even though it had strong ink affinity. Among the characters of the latex, particle size and surface tension were found to have the strong effect on ink absorbency. The ink absorbency increased with large particle size and low surface tension latex. The additives were varied and it was found that applying to the top coating was effective.

  • PDF

Optimal stacking sequence design of laminate composite structures using tabu embedded simulated annealing

  • Rama Mohan Rao, A.;Arvind, N.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.239-268
    • /
    • 2007
  • This paper deals with optimal stacking sequence design of laminate composite structures. The stacking sequence optimisation of laminate composites is formulated as a combinatorial problem and is solved using Simulated Annealing (SA), an algorithm devised based on inspiration of physical process of annealing of solids. The combinatorial constraints are handled using a correction strategy. The SA algorithm is strengthened by embedding Tabu search in order to prevent recycling of recently visited solutions and the resulting algorithm is referred to as tabu embedded simulated Annealing (TSA) algorithm. Computational performance of the proposed TSA algorithm is enhanced through cache-fetch implementation. Numerical experiments have been conducted by considering rectangular composite panels and composite cylindrical shell with different ply numbers and orientations. Numerical studies indicate that the TSA algorithm is quite effective in providing practical designs for lay-up sequence optimisation of laminate composites. The effect of various neighbourhood search algorithms on the convergence characteristics of TSA algorithm is investigated. The sensitiveness of the proposed optimisation algorithm for various parameter settings in simulated annealing is explored through parametric studies. Later, the TSA algorithm is employed for multi-criteria optimisation of hybrid composite cylinders for simultaneously optimising cost as well as weight with constraint on buckling load. The two objectives are initially considered individually and later collectively to solve as a multi-criteria optimisation problem. Finally, the computational efficiency of the TSA based stacking sequence optimisation algorithm has been compared with the genetic algorithm and found to be superior in performance.

Nanostructures in Thin Films of Block Copolymers

  • Russell Thomas P.;Hawker Craig J.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.80-80
    • /
    • 2006
  • As the size scale of features continue to shrink in devices, the use of self-assembly, i.e. a "bottom up" approach, for device fabrication becomes increasingly important. Yet, simple self-assembly alone will not be sufficient to meet the increasing demands place on the registry of structures, particularly nanostructured materials. Several criteria are key in the rapid advancement and technology transfer for self-assembling systems. Specifically, the assembly processes must be compatible with current $^{\circ}{\infty}top\;down^{\circ}{\pm}$ approaches, where standard photolithographic processes are used for device fabrication. Secondly, simple routes must be available to induce long-range order, in either two or three dimensions, in a rapid, robust and reliable manner. Thirdly, the in-plane orientation and, therefore, ordering of the structures, must be susceptible to a biasing by an external, macroscopic means in at least one, if not two directions, so that individual elements can be accessed in a reliable manner. Block copolymers, specifically block copolymers having a cylindrical microdomain morphology, are one such material that satisfy many, if not all, of the criteria that will be necessary for device fabrication. Here, we discuss several routes by which these versatile materials can be used to produce arrays of nanoscopic elements that have high aspect ratios (ideal for templating and scaffolding), that exhibit long-range order, that give access to multiple length scale structuring, and that are amenable to being biased by macroscopic features placed on a surface.

  • PDF

Behavior modeling and damage quantification of confined concrete under cyclic loading

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.625-635
    • /
    • 2017
  • Sets of nonlinear formulations together with an energy-based damage index (DI) are proposed to model the behavior and quantify the damage of the confined and unconfined concretes under monotonic and cyclic loading. The proposed formulations and DI can be employed in numerical simulations to determine the stresses and the damages to the fibers or the layers within the sections of reinforced concrete (RC) components. To verify the proposed formulations, an adaptive finite element computer program was generated to simulate the RC structures subjected to monotonic and cyclic loading. By comparing the simulated and the experimental test results, on both the full-scale structural members and concrete cylindrical samples, the proposed uniaxial behavior modeling formulations for confined and unconfined concretes under monotonic and cyclic loading, based on an iterative process, were accordingly adjusted, and then validated. The proposed formulations have strong mathematical structures and can readily be adapted to achieve a higher degree of precision by improving the relevant coefficients based on more precise tests. To apply the proposed DI, the stress-strain data of concrete elements is required. It can easily be calculated by using the proposed nonlinear constitutive laws for confined and unconfined concretes in this paper.

Cavitation resistance of concrete containing different material properties

  • Kumar, G.B. Ramesh;Bhardwaj, Arjit;Sharma, Umesh Kumar
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.15-28
    • /
    • 2018
  • In the present investigation, influence of various material parameters on the cavitation erosion resistance of concrete was investigated on the basis of laboratory experiments. As there is no well-established laboratory test method for evaluating the cavitation resistance of concrete, a test set up called 'cavitation jet' was specially established in the present study in order to simulate the cavitation phenomenon experienced in the hydraulic structures. Various mixtures of concrete were designed by varying the grade of concrete, type and quantity of pozzolana, type of aggregates and cement type to develop good cavitation resistant concrete constructed using marginal aggregates. Three types of aggregates having three different Los Angeles abrasion values (less than 30%, between 30% and 50% and more than 50%) were employed in this study. To evaluate the cavitation resistance a total of 60 cylindrical specimens and 60 companion cubes were tested in the laboratory respectively. The results indicate that cavitation resistance of concrete degrades significantly as the L.A. abrasion value of aggregates goes beyond the 30% value. Incorporation of pozzolanic admixtures was seemed to be beneficial to enhance the cavitation resistance of concrete. Influence of other material parameters on the cavitation resistance of concrete was also noted and important observations have been made in the paper.

Characteristics of Acoustic Impulse Response of Submerged Cylindrical Objects as Elements of Target-Scattered Echo (표적신호 시뮬레이션 요소로서 원통형 몰수체의 충격응답의 특성)

  • Kim, Jae-Soo;Seong, Nak-Jin;Lee, Sang-Young;Kim, Kang;Yu, Myong-Jong;Cho, Woon-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.5-13
    • /
    • 1994
  • Simulation of the target-scattered echo requires the understanding of scattering mechanism at the highlight points. In this paper, the basic assumption of Highlight Model is reviewed through the analyzed data obtained in the acoustic water tank experiment. The analysis shows that the scattering mechanism involves pulse elongation and frequency shift as elements of target-scattered echo, and that the internal structures affect the temporal response of the target-scattered echo significantly. The band-limited impulse response or Green's function due to the diffraction from highlight points of internal structures is not mere delta function, but acts like a filter, which causes frequency shift and is elongated in time.

  • PDF

Modal Transmission-Line Theory to Design Circular Grating Filters for Optical Communication (광통신용 원통형 격자필터 설계를 위한 모드 전송선로 이론)

  • 호광춘;박천관
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.27-33
    • /
    • 2003
  • Circular Distributed-feedback (DFB) guiding structures can be incorporated in most of the semiconductor laser devices because of the frequency-selective property applicable as an optical filter in optical communications. In this paper, we present a novel and simple modal transmission-line theory (MTLT) using Floquet-Babinet's principle to analyze the optical filtering characteristics of Bragg gratings with cylindrical profile. The numerical results reveal that this method offers a simple and convenient algorithm to analyze the filtering characteristics of circular DFB configurations as well as is extended conveniently to evaluate the guiding problems of circular multi-layered periodic structures.

Identification on the Three-Dimensional Vortical Structures of Impeller Flow by a Multi-Plane Stereoscopic PIV Method (스테레오 PIV 기법에 의한 임펠러 와류유동의 3차원 구조측정)

  • Yoon, Sang-Youl;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.773-780
    • /
    • 2003
  • The three-dimensional spatial structures of impeller flow created by a six bladed Rushton turbine have identified based on the volumetric velocity information from multi-plane stereoscopic PIV measurements. A total of 10 planes with 2 mm space and a 50 mm by 64 mm size of the field of view were targeted. To reduce the depth of focus, we adopted an angle offset configuration which satisfied the Scheimpflug condition. The distortion compensation procedure was utilized during the in situ calibration. Phase-locked instantaneous data were ensemble averaged and interpolated in order to obtain mean 3-D. volumetric velocity fields on a 60 degree sector of a cylindrical ring volume enclosing the turbine blade. Using the equi-vorticity surface rendering, the spatial structure of the trailing vortices was clearly demonstrated. Detail flow characteristics of the radial jet reported in previous studies of mixer flows were easily identified.

Introducing a new all steel accordion force limiting device for space structures

  • Poursharifi, Maryam;Abedi, Karim;Chenaghlou, Mohammadreza;Fleischman, Robert B.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.69-82
    • /
    • 2020
  • A significant defect of space structures is the progressive collapse issue which may restrict their applicability. Force limiting devices (FLDs) have been designed to overcome this deficiency, though they don't operate efficiently in controlling the force displacement characteristics. To overcome this flaw, a new type of FLD is introduced in the present study. The "all steel accordion force limiting device" (AFLD) which consists of three main parts including cylindrical accordion solid core, tubular encasing and joint system is constructed and its behavior has been studied experimentally. To improve AFLD's behavior, Finite element analysis has been carried out by developing models in ABAQUS software. A comprehensive parametric study is done by considering the effective design parameters such as core material, accordion wave length and accordion inner diameter. From the results, it is found that AFLD can obtain a perfect control on the force-displacement characteristics as well as attaining the elastic-perfect plastic behavior. Obtaining higher levels of ultimate load carrying capacity, dissipated energy and ductility ratio can be encountered as the main privileges of this device. Ease of construction and erection are found to be further advantages of AFLD. Based on the obtained results, a procedure for predicting AFLD's behavior is offered.

The Study of Dynamic Instability of Supercavitating Shell Structures (초공동 운동체 구조물의 동적 불안정성 연구)

  • Kim, Seung-Jo;Byun, Wan-Il;Jang, Chae-Kyu;Cho, Jin-Yeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.469-471
    • /
    • 2010
  • Supercavitating vehicles which cruise under water undergo high longitudinal force caused by thrust and drag. These combination may cause structural buckling. Static and dynamic buckling analysis method by using FEM can be used to predict this structural failure behavior. In this paper, some principles which include method for solution eigenvalue problem for buckling analysis are introduced. And before buckling analysis, we predicted some mode shape and natural frequency of cylindrical shell by using DIAMOND/IPSAP eigen-solver.

  • PDF