• Title/Summary/Keyword: cylindrical shell element

Search Result 185, Processing Time 0.031 seconds

Buckling behavior of composite cylindrical shells with cutout considering geometric imperfection

  • Heidari-Rarani, M.;Kharratzadeh, M.
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.305-313
    • /
    • 2019
  • Creating different cutout shapes in order to make doors and windows, reduce the structural weight or implement various mechanisms increases the likelihood of buckling in thin-walled structures. In this study, the effect of cutout shape and geometric imperfection (GI) is simultaneously investigated on the critical buckling load and knock-down factor (KDF) of composite cylindrical shells. The GI is modeled using single perturbation load approach (SPLA). First, in order to assess the finite element model, the critical buckling load of a composite shell without cutout obtained by SPLA is compared with the experimental results available in the literature. Then, the effect of different shapes of cutout such as circular, elliptic and square, and perturbation load imperfection (PLI) is investigated on the buckling behavior of cylindrical shells. Results show that the critical buckling load of a shell without cutout decreases by increasing the PLI, whereas increasing the PLI does not have a great impact on the critical buckling load in the presence of cutout imperfection. Increasing the cutout area reduces the effect of the PLI, which results in an increase in the KDF.

Vibration Analyses of Cylindrical Hybrid Panel with Viscoelastic Layer Based on Layerwise Finite Elements (층별변위 유한요소법에 기초한 점탄성층을 갖는 원통형 복합적층 패널의 진동해석)

  • Oh, Il-Kwon;Cheng, Tai-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1361-1369
    • /
    • 2005
  • Based on a full layerwise displacement shell theory, the nitration and damping characteristics of cylindrical sandwiched panels with viscoelastic layers are investigated. The transverse shear deformation and the normal strain of the cylindrical hybrid panels are fully taken into account for the structural damping modelling. The present finite element model Is formulated by using Hamilton's virtual work principle and the cylindrical curvature of hybrid panels is exactly modeled. Modal loss factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich panels. Present results show that the full layerwise finite element method can accurately predict the vibration and damping characteristics of the cylindrical hybrid panels with surface damping treatments and constrained layer damping.

Vibration Analyses of Cylindrical Hybrid Panel With Viscoelastic Layer Based On Layerwise Finite Elements (층별변위 유한요소법에 기초한 점탄성층을 갖는 원통형 복합적층 패널의 진동해석)

  • Oh, Il-Kwon;Cheong, Tai-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.772-778
    • /
    • 2005
  • Based on a full layerwise displacement shell theory, the vibration and damping characteristics of cylindrical sandwiched panels with viscoelastic layers are investigated. The transverse shear deformation and the normal strain of the cylindrical hybrid panels are fully taken into account for the structural damping modelling. The present finite element model is formulated by using Hamilton's virtual work principle and the cylindrical curvature of hybrid panels is exactly modeled. Modal loss factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich panels. Present results show that the full layerwise finite element method can accurately predict the vibration and damping characteristics of the cylindrical hybrid panels with surface damping treatments and constrained layer damping.

  • PDF

Natural frequency analysis of joined conical-cylindrical-conical shells made of graphene platelet reinforced composite resting on Winkler elastic foundation

  • Xiangling Wang;Xiaofeng Guo;Masoud Babaei;Rasoul Fili;Hossein Farahani
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.367-384
    • /
    • 2023
  • Natural frequency behavior of graphene platelets reinforced composite (GPL-RC) joined truncated conical-cylindrical- conical shells resting on Winkler-type elastic foundation is presented in this paper for the first time. The rule of mixture and the modified Halpin-Tsai approach are applied to achieve the mechanical properties of the structure. Four different graphene platelets patterns are considered along the thickness of the structure such as GPLA, GPLO, GPLX, GPLUD. Finite element procedure according to Rayleigh-Ritz formulation has been used to solve 2D-axisymmetric elasticity equations. Application of 2D axisymmetric elasticity theory allows thickness stretching unlike simple shell theories, and this gives more accurate results, especially for thick shells. An efficient parametric investigation is also presented to show the effects of various geometric variables, three different boundary conditions, stiffness of elastic foundation, dispersion pattern and weight fraction of GPLs nanofillers on the natural frequencies of the joined shell. Results show that GPLO and BC3 provide the most rigidity that cause the most natural frequencies among different BCs and GPL patterns. Also, by increasing the weigh fraction of nanofillers, the natural frequencies will increase up to 200%.

Modal Analysis of Eccentric Shells with Fluid-Filled Annulus (유체가 채워진 환형공간을 갖는 편심 원통형 셸의 모드 해석)

  • 정명조;정경훈;박윤원
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.536-550
    • /
    • 2000
  • Inversitgated in this study are the modal characteristics of the eccentric cylindrical shells with fluid-filled annulus. Theoretical method is developed to find the natural frequencies of the shell using the finite Fourier expansion and their results are compared with those of finite element method to verify the validation of the method developed. The effect of eccentricity on the modal characteristics of the shells is investigated using a finite element modeling.

  • PDF

Comparison of elastic buckling loads for liquid storage tanks

  • Mirfakhraei, P.;Redekop, D.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.161-170
    • /
    • 2002
  • The problem of the elastic buckling of a cylindrical liquid-storage tank subject to horizontal earthquake loading is considered. An equivalent static loading is used to represent the dynamic effect. A theoretical solution based on the nonlinear Fl$\ddot{u}$gge shell equations is developed, and numerical results are found using the new differential quadrature method. A second solution is obtained using the finite element package ADINA. A major motivation of the study was to show that the new method can serve to verify finite element solutions for cylindrical shell buckling problems. For this purpose the paper concludes with a comparison of buckling results for a number of cases covering a wide range in tank geometry.

Modal Analysis of Coaxial Shells with Fluid-Filled Annulus

  • Jhung, Myung-Jo;Kim, Yong-Beum;Jeong, Kyeong-Hoon;Park, Suhn
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.328-341
    • /
    • 2000
  • Investigated in this study are the modal characteristics of the coaxial cylindrical shells with fluid-filled annulus. Theoretical method is developed to find the natural frequencies of the shell using the finite Fourier series expansion, and their results are compared with those of finite element method to verify the validation of the method developed. The effect of the fluid-filled annulus and the boundary conditions on the modal characteristics of the coaxial shells is investigated using a finite element modeling.

  • PDF

Buckling conditions and strengthening by CFRP composite of cylindrical steel water tanks under seismic load

  • Ali Ihsan Celik;Mehmet Metin Kose;Ahmet Celal Apay
    • Earthquakes and Structures
    • /
    • v.27 no.2
    • /
    • pp.97-111
    • /
    • 2024
  • In this paper, buckling conditions and retrofitting of cylindrical steel water storage tanks with different roof types and wall thicknesses were investigated by using finite element method. Four roof types of cylindrical steel tanks which are open-top, flat-closed, conical-closed and torispherical-closed and three wall thicknesses of 4, 6 and 8 mm were considered in FE modeling of cylindrical steel tanks. The roof shapes significantly affect load distribution on the tank shell under the seismic action. Composite FRP materials are widely used for winding thin-walled cylindrical steel structures. The retrofitting efficiency of cylindrical steel water tank is tested under the seismic loading with the externally bonded CFRP laminates. In retrofitting of cylindrical steel tank, the CFRP composite material coating method was used to improve of seismic performance of cylindrical steel tanks. ANSYS software was used to analyze the cylindrical steel tanks and maximum equivalent (von-Mises) and directional deformation were obtained. Equivalent (von-Mises) stresses significantly decreased due to the coating of the tank shell with FRP composite material. In thin-walled steel structures, excessive stress causes buckling and deformations. Therefore, retrofitting led to decrease in stress, reductions in directional and buckling deformation of the open-top, flat-closed, conical-closed and torispherical-closed tanks.

Spring-back prediction for sheet metal forming process using hybrid membrane/shell method (하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석)

  • F. Pourboghrat
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.62-65
    • /
    • 1999
  • To reduce the cost of finite element analyses for sheet forming a 3D hybrid membrance/sheel method has been developed to study the springback of anisotropic sheet metals. in the hybrid method the bending strains and stresses were analytically calculated as post-processing using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback a shell finite element model was used to unload the final shape of the sheet obtained from the membran code and the stresses and strains that were calculated analytically. For verification the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. the springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulateboth loading an unloading and the experimentally measured data. The CPU time saving with the hybrid method over the full shell model was 75% for the punch stretching problem.

  • PDF

Buckling Strength of Cylindrical Shell Subjected to Axial Loads (축하중을 받는 원통형 쉘의 좌굴강도)

  • Kim, Seung Eock;Choi, Dong Ho;Lee, Dong Won;Kim, Chang Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.191-200
    • /
    • 2001
  • This paper presents buckling analysis of the cylindrical shell subjected to axial loads using numerical method. The modeling method, appropriate element type, and number of element are recommended by comparing with analytical solution. Based on the parametric study, buckling stress decreases significantly as the diameter-thickness ratio increases. These results are different from those obtained from buckling analysis of columns. The number of buckling half-wave in circumferential direction decreases as the diameter-height ratio increases. Buckling stress increases 1~2% as the thickness of base plate increases. Therefore the effect of base plate on buckling strength for cylindrical shell can be disregarded. Buckling stress significantly decreases as the amplitude of initial geometric imperfection used for calculating buckling stress is developed and it shows a good agreement with numerical results.

  • PDF