• Title/Summary/Keyword: cylindrical objects

Search Result 49, Processing Time 0.022 seconds

Quantitative Approach to the Magnetic Force of a Cylindrical Permanent Magnet Acting on a Ferromagnetic Object (원형 막대자석이 강자성 물체에 작용하는 자기력에 대한 정량적 접근)

  • Hyun, Donggeul;Shin, Aekyung
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1249-1261
    • /
    • 2018
  • The quantitative representation for the magnetic force of a cylindrical permanent magnet acting on a ferromagnetic cylindrical object was derived on the basis of magnetization theories, and the Gilbert and Ampere models of magnetism. The magnetic force derived in this study is directly proportional to the remanent magnetization magnetic field, the cross-sectional area of the permanent magnet, the saturation magnetic field, and the cross-sectional area of the ferromagnetic object and is inversely proportional to the square of the quantity related to the distance between the permanent magnet and the ferromagnetic object. The magnetic forces of an AlNiCoV cylindrical permanent magnet and a Ferrite cylindrical permanent magnet, both with a radius of 0.4 cm and a length of 7 cm, acting on ferromagnetic objects at distances farther than the radius were calculated to be less than 3.6711 N and 0.1857 N, respectively.

A Study of Reference Image Generation for Moving Object Detection under Moving Camera (이동카메라에서 이동물체 검출을 위한 참조 영상 생성에 관한 연구)

  • Lee, June-Hyung;Chae, Ok-Sam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.67-73
    • /
    • 2007
  • This paper presents a panoramic reference image generation based automatic algorithm for moving objects detection robust to illumination variations under moving camera. Background image is generated by rotating the fixed the camera on the tripod horizontally. aligning and reorganizing this images. In generation of the cylindrical panoramic image, most of previous works assume the static environment. We propose the method to generating the panoramic reference image from dynamic environments in this paper. We develop an efficient approach for panoramic reference image generation by using accumulated edge map as well as method of edge matching between input image and background image. We applied the proposed algorithm to real image sequences. The experimental results show that panoramic reference image generation robust to illumination variations can be possible using the proposed method.

  • PDF

Design of Cylindrical Magnetic Gradient field for NMR-CT (NMR-CT에서 원통좌표계를 구현하는 경사자계의 고안)

  • 이대행;이순칠
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.2
    • /
    • pp.132-139
    • /
    • 1992
  • We have designed a magnetic field gradient useful for cylindrical imaging in NMR-CT. The direc¬tion of the designed field is parallel to the axis and the gradient in the radial direction of cylindrical coordinate is monotonically increasing. The ratio of the gradient in the radial and axial direction is greater than 10 near the center of coordinate. This ratio depends on solenoid length, the number of reverse current turns at center, and the amount of the reverse current. We built a gradient coil based on the numerical simulation and tested the field generated by NMR-CT. The resulting image matches with the theoretical expectation within 10% error. Since the data acquisition time of 1-D imaging is significantly shorter than 2-D imaging, it becomes possible to image much more dynamic objects by the use of this gradient field.

  • PDF

Dexterous Manipulation from Pinching to Power Grasping-Effective strategy according to object dimensions and grasping position-

  • Hasegawa, Yasuhisa;Rukuda, Toshio;Kanada, Kensaku
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.24-27
    • /
    • 2003
  • This paper discusses practical strategies for transition from a pinching to a power grasping, where a multi-fingered hand mounted on a robotic arm envelops a cylindrical object on a table. When the manipulation system grasps a cylindrical object like a pen on a desk, a complete enveloping is not impossible in the initial configuration. The system firstly pinches the object only with two or three fingers and then grasp it with fingers and a palm after regrasping. In this pinching-grasping transition maneuver, human unconsciously selects proper strategy according to some conditions including object dimensions and initial pinching positions. In this paper we therefore develop six possible strategies for this pinching-grasping transition and then investigate their performances for some objects with various dimensions and various grasping positions, using numerical simulations. Based on their results, effective strategies are implemented by using a hand-arm system.

  • PDF

A New Profilometry System for Precision Measurement of 3D Shape Using the Directional Magnification Control of a Laser Light Stripe (선모양을 한 레이저빔의 방향성 배율 확대를 이용한 정밀 형상측정 시스템)

  • Park, Seung-Kyu;Baik, Sung-Hoon;KIM, Cheol-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.60-65
    • /
    • 1997
  • This paper proposes a profilometry system for precise surface contouring of 3D objects using a direc- tionally magnified image of a laser light stripe. The resolution of this system can be improved several times comparad with that of conventional systems without loss of spatial resolution and depth of measurement. A pair of cylindrical lens(a convex lens and a concave lens) are used for a directionally magnified image of a laser light stripe maintaining the same focal plane. Also, image processing procedures for image reconstruc- tions are described.

  • PDF

Label Restoration Using Biquadratic Transformation

  • Le, Huy Phat;Nguyen, Toan Dinh;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.6 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • Recently, there has been research to use portable digital camera to recognize objects in natural scene images, including labels or marks on a cylindrical surface. In many cases, text or logo in a label can be distorted by a structural movement of the object on which the label resides. Since the distortion in the label can degrade the performance of object recognition, the label should be rectified or restored from deformations. In this paper, a new method for label detection and restoration in digital images is presented. In the detection phase, the Hough transform is employed to detect two vertical boundaries of the label, and a horizontal edge profile is analyzed to detect upper-side and lower-side boundaries of the label. Then, the biquadratic transformation is used to restore the rectangular shape of the label. The proposed algorithm performs restoration of 3D objects in a 2D space, and it requires neither an auxiliary hardware such as 3D camera to construct 3D models nor a multi-camera to capture objects in different views. Experimental results demonstrate the effectiveness of the proposed method.

Design of Non-Contact Pick-Up Head for Carrying Large Flat Sheets (대평판 이송을 위한 비접촉 헤드 설계)

  • Kim, Joon Hyun;Kim, Young Geul;Ahn, Sung Wook;Kim, Young Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.937-944
    • /
    • 2013
  • This paper describes an improved model that can be used for configuring a non-contact pneumatic head to handle a large sheet of glass. The cylindrical head model is of a large size (70 mm). It operates on vortex flow, which can simultaneously generate suction and repulsion over the flat object's surface. The head allows for the minimal non-contact lifting of objects weighing over 3N by using reference conditions (working pressure and head dimensions). Additionally, a functional flow-guide is applied for inducing a developing tangential vortex flow to increase suction and repulsion to the reference head. The cylindrical flow-guide is associated with relatively low tangential velocity. The improved model generates greater lifting force than the reference model, as verified experimentally.

A model of Photon Dominated Region(PDR) for the UV-heated outflow walls in the embedded protostellar objects

  • Lee, Seok-Ho;Lee, Jeong-Eun;Park, Yong-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.83.1-83.1
    • /
    • 2012
  • We have developed an self-consistent PDR model to synthesize warm CO lines of Herschel/PACS observations more accurately. The PDR model solves the FUV continuum radiative transfer, gas energetics, and chemistry simultaneously. A local FUV radiation flux is calculated by using a Monte Carlo method taking anisotropic scattering into account. A new (r, ${\delta}$) coordinate system was used, where the r is the distance from the origin and the ${\delta}$ is z/$R^2$ in the cylindrical coordinate of (R,z). This is an adequate coordinate system to represent a power-law density of an envelope and a high spatial resolution near the outflow wall. The gas enegetics and chemistry are solved locally and considered $10^4K$ blackbody radiation field instead of the interstellar radiation filed. This newly developed model can be used to analyze quantitatively the effect of UV-heated outflow walls on the warm molecular lines in the embedded proto-stellar objects.

  • PDF

The Position/Orientation Determination of a Mobile-Task Robot Using an Active Calibration Scheme

  • Jin, Tae-Seok;Lee, Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1431-1442
    • /
    • 2003
  • A new method of estimating the pose of a mobile-task robot is developed based upon an active calibration scheme. The utility of a mobile-task robot is widely recognized, which is formed by the serial connection of a mobile robot and a task robot. To be an efficient and precise mobile-task robot, the control uncertainties in the mobile robot should be resolved. Unless the mobile robot provides an accurate and stable base, the task robot cannot perform various tasks. For the control of the mobile robot, an absolute position sensor is necessary. However, on account of rolling and slippage of wheels on the ground, there does not exist any reliable position sensor for the mobile robot. This paper proposes an active calibration scheme to estimate the pose of a mobile robot that carries a task robot on the top. The active calibration scheme is to estimate a pose of the mobile robot using the relative position/orientation to a known object whose location, size, and shape are known a priori. For this calibration, a camera is attached on the top of the task robot to capture the images of the objects. These images are used to estimate the pose of the camera itself with respect to the known objects. Through the homogeneous transformation, the absolute position/orientation of the camera is calculated and propagated to get the pose of a mobile robot. Two types of objects are used here as samples of work-pieces: a polygonal and a cylindrical object. With these two samples, the proposed active calibration scheme is verified experimentally.

An Approach to 3D Object Localization Based on Monocular Vision

  • Jung, Sung-Hoon;Jang, Do-Won;Kim, Min-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1658-1667
    • /
    • 2008
  • Reconstruction of 3D objects from a single view image is generally an ill-posed problem because of the projection distortion. A monocular vision based 3D object localization method is proposed in this paper, which approximates an object on the ground to a simple bounding solid and works automatically without any prior information about the object. A spherical or cylindrical object determined based on a circularity measure is approximated to a bounding cylinder, while the other general free-shaped objects to a bounding box or a bounding cylinder appropriately. For a general object, its silhouette on the ground is first computed by back-projecting its projected image in image plane onto the ground plane and then a base rectangle on the ground is determined by using the intuition that touched parts of the object on the ground should appear at lower part of the silhouette. The base rectangle is adjusted and extended until a derived bounding box from it can enclose the general object sufficiently. Height of the bounding box is also determined enough to enclose the general object. When the general object looks like a round-shaped object, a bounding cylinder that encloses the bounding box minimally is selected instead of the bounding box. A bounding solid can be utilized to localize a 3D object on the ground and to roughly estimate its volume. Usefulness of our approach is presented with experimental results on real image objects and limitations of our approach are discussed.

  • PDF