• Title/Summary/Keyword: cylinders

Search Result 1,174, Processing Time 0.025 seconds

Strengthening of concrete damaged by mechanical loading and elevated temperature

  • Ahmad, Hammad;Hameed, Rashid;Riaz, Muhammad Rizwan;Gillani, Asad Ali
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.645-658
    • /
    • 2018
  • Despite being one of the most abundantly used construction materials because of its exceptional properties, concrete is susceptible to deterioration and damage due to various factors particularly corrosion, improper loading, poor workmanship and design discrepancies, and as a result concrete structures require retrofitting and strengthening. In recent times, Fiber Reinforced Polymer (FRP) composites have substituted the conventional techniques of retrofitting and strengthening of damaged concrete. Most of the research studies related to concrete strengthening using FRP have been performed on undamaged test specimens. This contribution presents the results of an experimental study in which concrete specimens were damaged by mechanical loading and elevated temperature in laboratory prior to application of Carbon Fiber Reinforced Polymer (CFRP) sheets for strengthening. The test specimens prepared using concrete of target compressive strength of 28 MPa at 28 days were subjected to compressive and splitting tensile testing up to failure and the intact pieces of the failed specimens were collected for the purpose of repair. In order to induce damage as a result of elevated temperature, the concrete cylinders were subjected to $400^{\circ}C$ and $800^{\circ}C$ temperature for two hours duration. Concrete cylinders damaged under compressive and split tensile loads were re-cast using concrete and rich cement-sand mortar, respectively and then strengthened using CFRP wrap. Concrete cylinders damaged due to elevated temperature were also strengthened using CFRP wrap. Re-cast and strengthened concrete cylinders were tested in compression and splitting tension. The obtained results revealed that re-casting of specimens damaged by mechanical loadings using concrete & mortar, and then strengthened by single layer CFRP wrap exhibited strength even higher than their original values. In case of specimens damaged by elevated temperature, the results indicated that concrete strength is significantly dropped and strengthening using CFRP wrap made it possible to not only recover the lost strength but also resulted in concrete strength greater than the original value.

A Numerical Study on Aerodynamic Noise Characteristics of the Tandem Cylinders using DES and FW-H Acoustic Analogy (DES와 FW-H 음향상사법을 이용한 탠덤 실린더의 공력소음 특성 연구)

  • Kim, Manshik;Lee, Youn Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.883-891
    • /
    • 2018
  • In this paper, aerodynamic noise simulation was conducted using DES (Detached Eddy Simulation) and FW-H (Ffowcs Williams and Hawkings) acoustic analogy for the tandem cylinders which have configuration similar to a landing gear of airplanes. Numerical simulation for the tandem cylinders whose centers are 3.7D apart was carried out and results were compared with the measured data such as flow characteristics, pressure coefficients on the cylinder surfaces and far-field noise characteristics. It was confirmed that periodically shedded vortices released at the upstream cylinder and impinged on the downstream cylinder surface are major sources of aerodynamic noise. After verifying the computational method of using DES and FW-H acoustic analogy for predicting aerodynamic noise of tandem cylinders, additional simulation was conducted to examine the effect of attaching a splitter plate at the rear of the upstream cylinder. It was confirmed that the noise level in specific frequency band decreased significantly because the splitter plate changed the vortex shedding features and reduced dipole noise source.

Simulation of fluid flow and particle transport around two circular cylinders in tandem at low Reynolds numbers (낮은 레이놀즈 수에서 두 개의 원형 실린더 주위 유동 및 입자 거동 해석)

  • Khalifa, Diaelhag Aisa Hamid;Jeong, S.;Kim, D.
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.81-89
    • /
    • 2021
  • Understanding particle-laden flow around cylindrical bodies is essential for the better design of various applications such as filters. In this study, laminar flows around two tandem cylinders and the motions of particles in the flow are numerically investigated at low Reynolds numbers. We aim to reveal the effects of the spacing between cylinders, Reynolds number and particle Stokes number on the characteristics of particle trajectories. When the cylinders are placed close, the unsteady flow inside the inter-cylinder gap at Re = 100 shows a considerable modification. However, the steady recirculation flow in the wake at Re = 10 and 40 shows an insignificant change. The change in the flow structure leads to the variation of particle dispersion pattern, particularly of small Stokes number particles. However, the dispersion of particles with a large Stokes number is hardly affected by the flow structure. As a result, few particles are observed in the cylinder gap regardless of the cylinder spacing and the Reynolds number. The deposition efficiency of the upstream cylinder shows no difference from that of a single cylinder, increasing as the Stokes number increases. However, the deposition on the downstream cylinder is found only at Re = 100 with large spacing. At this time, the deposition efficiency is generally small compared to that of an upstream cylinder, and the deposition location is also changed with no deposited particles near the stagnation point.

Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models

  • Berradia, Mohammed;Azab, Marc;Ahmad, Zeeshan;Accouche, Oussama;Raza, Ali;Alashker, Yasser
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.515-535
    • /
    • 2022
  • The strength models for fiber-reinforced polymer (FRP)-confined normal strength concrete (NC) cylinders available in the literature have been suggested based on small databases using limited variables of such structural members portraying less accuracy. The artificial neural network (ANN) is an advanced technique for precisely predicting the response of composite structures by considering a large number of parameters. The main objective of the present investigation is to develop an ANN model for the axial strength of FRP-confined NC cylinders using various parameters to give the highest accuracy of the predictions. To secure this aim, a large experimental database of 313 FRP-confined NC cylinders has been constructed from previous research investigations. An evaluation of 33 different empirical strength models has been performed using various statistical parameters (root mean squared error RMSE, mean absolute error MAE, and coefficient of determination R2) over the developed database. Then, a new ANN model using the Group Method of Data Handling (GMDH) has been proposed based on the experimental database that portrayed the highest performance as compared with the previous models with R2=0.92, RMSE=0.27, and MAE=0.33. Therefore, the suggested ANN model can accurately capture the axial strength of FRP-confined NC cylinders that can be used for the further analysis and design of such members in the construction industry.

Cycling life prediction method considering compressive residual stress on liner for the filament-wound composite cylinders with metal liner (금속재 라이너를 갖는 복합재 압력용기의 라이너 압축잔류응력을 고려한 반복수명 예측 방법에 대한 연구)

  • Park, Ji-Sang;Jeung, Sang-Su;Chung, Jae-Han
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.22-28
    • /
    • 2006
  • In manufacturing process of composite cylinders with metal liner, the autofrettage process which induces compressive residual stress on the liner to improve cycling life can be applied. In this study, a finite element analysis technique is presented, which can predict accurately the compressive residual stress on the liner induced by autofrettage and stress behavior after. Material and geometrical non-linearity is considered in the finite element analysis, and the Von-Mises stress of a liner is introduced as a key parameter that determines pressure cycling life of composite cylinders. Presented methodology is verified through fatigue test of liner material and pressure cycling test of composite cylinders.

Seismic Behavior of Concrete Cylinders Reinforced by Outside Lateral Hoops (외측 횡 구속된 콘크리트 공시체의 내진 거동)

  • Choi, Eunsoo;Kim, Byeong Hwa;Shin, Jae Kwan;Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • This paper investigates experimentally the confinement effect on concrete. For this purpose, outside lateral reinforcement members made of stainless steel and GFRP were employed. Then, uniaxial compressive tests on concrete cylinders incorporating the members were conducted. A total of 30 cylinder specimens, specifically, 6 unconfined specimens, 12 specimens confined by stainless steel and 12 specimens confined by GFRP, were fabricated. The failure patterns of both unconfined and confined specimens were assessed and discussed based on experimental results. The results proved that the maximum stress and corresponding strains of the cylinders confined using the proposed hoops are increased in comparison with those of the unconfined. This supports that the current work can be used for retrofitting concrete members and structures and thus may lead to increased stability of such structures.

On the Virtual Inertia Coefficient of the Chine-type Ship in Vertical Vibration (Chine형선(型船)의 상하진동(上下振動)에 대(對)한 가상관성계수(假想慣性係數)에 관(關)하여)

  • K.C.,Kim;J.J.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1972
  • To contribute towards more accurate estimation of the virtual coefficient for the vertical vibration of the chine-type ship, experimentally obtained three-dimensional correction factors, J, of added mass of prismatic beams having cross section shape of hypotrocoid characters, slightly concaved Lewis form and elliptic form are investigated in connection with the applicability of an approximate analytical calculation method compared to that proposed by T. Kumai[6] for the Lewis form cylinders, and synthetically in compared with the experimental works on various cross section shapes of the other type by L.C. Burril et al[8] and the analytical works on the ellipsoid of revolution by F.M. Lewis[1] and J.L. Taylor[2]. The experimental results show that the aforementioned analytical method gives, unlike that for the Lewis form cylinders, considerably larger J-values for the chine-type cylinders, and that the influence of the character of the cross section shape on J-values is not remarkable in practical sense. Finally, considering in synthesis the experimental results on prismatic beams, the Burril's works on palabolic plan form and elliptic plan form, and that the chine-type ship usually has a hull form of transom stern, it is fairly safe to say, at the present stage, that adoptation of the Taylor's J-values will not results in any large error in estimation of the virtual inertia coefficients of the chine-type ships.

  • PDF

Study on the Autofrettage Pressure for SCBA Type3 Cylinder (공기호흡기용 Type3 용기의 자긴압력과 수명에 관한 연구)

  • Kim, Kwang Seok;Lee, Kyomin;Lee, Jaehun;Cho, Seongmin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.53-56
    • /
    • 2016
  • In this study, experiments and finite element method analysis were used to determine the autofrettage pressure that is optimal and then maximizes the cycling life of Type3 composite cylinders used in self-contained breathing apparatus. For both approaches, the cylinders were pressurized at 100, 110, ${\ldots}$, 290 % of the test pressure, respectively. The stresses were computed by the FEM analysis; while the strains of cylinders were recorded and the failure modes were monitored during the cycling test. As a result, from the good agreements between the simulations and experiments, it was concluded that at least 70 % of the test pressure should be applied as the autofrettage pressure in order to takes visible effect on the cycling life, and 160 % of the test pressure induces the maximum cycling life and the desired failure mode.

Measurement Method of Residual Stresses in Thick Composite Cylinders (두꺼운 복합재 원통의 잔류응력 측정방법)

  • Kim, Jong-Woon;Park, Dong-Chang;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.245-248
    • /
    • 2005
  • During manufacturing thick composite cylinders, large thermal residual stresses are developed and induce catastrophic interlaminar failures. Since the residual stresses are dependent on many process parameters, such as temperature distribution during cure, cure shrinkage, winding tension, and migration of fibers, calculation of the residual stresses is very difficult. Therefore a radial-cut method have been used to measure the residual stresses in the composite cylinders. But the conventional radial-cut method needs to know numerous material properties which are not only troublesome to obtain but also vary with change of fiber arrangement during consolidation. In this paper, a new radial-cut method with cut-cylinder-bending test was proposed and the measured residual stresses were compared with calculated thermal residual stresses. It was found that the new radial-cut method which does not need to know any of material properties gave better estimation of residual stresses regardless of radial variation of material properties. Additionally, interlaminar tensile strength could be obtained by the cut-cylinder-bending test.

  • PDF

Analysis of Thermo-Viscoelastic Residual Stresses and Thermal Buckling of Composite Cylinders (복합재 원통구조물의 열-점탄성적 잔류음력 및 열좌굴 해석)

  • Kim, Cheol;Kim, Yeong-Kook;Choi, Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1653-1665
    • /
    • 2002
  • One of the most significant problems in the processing of composite materials is residual stresses. The residual stresses may be high enough to cause cracking in the matrix even before external loads are applied and can degrade the integrity of composite structures. In this study, thermo-viscoelastic residual stresses occurred in the polymeric composite cylinder are investigated. This type of structure is used for the launch vehicle fuselage. The time and degree of cure dependent thermo-viscoelastic constitutive equations are developed and coupled with a thermo-chemical process model. These equations are solved with the finite element method to predict the residual stresses in the composite structures during cure. A launch vehicle experiences high thermal loads during flight and re-entry due to aerodynamic heating or propulsion heat, and the thermal loads may cause thermal buckling on the structure. In this study the thermal buckling analysis of composite cylinders are performed. Two boundary conditions such as all clamped and all simply supported are used for the analysis. The effects of laminates stacking sequences, shapes and residual stresses on the critical buckling temperatures of composite cylinders are investigated. The thermal buckling analysis is performed using ABAQUS.