• Title/Summary/Keyword: cylinder test

Search Result 912, Processing Time 0.026 seconds

Reliability assessment test for heavy sluice gate of hydraulic cylinder (수문용 대형 유압실린더의 신뢰성 평가)

  • 이용범;현동수;김형의;이근호;정동수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.91-97
    • /
    • 2001
  • These Study are for the development of the reliability assessment test code and test equipment and test procedures of the heavy sluice gate hydraulic cylinder. Because there is no reliability test code for the heavy sluice gate hydraulic cylinder inside and outside of the country, the modified reliability test code is made reference for the related existing standards like as ISO, JIS, MIL, TUV, DIN, KS and etc. In this study, the novel method is proposed to evaluate efficiency of the heavy sluice gate hydraulic cylinder on the loading conditions and established the conditions of the acceleration life test to reduce the testing time and cycles. The testing equipments for life test, lode operating test, high and low temperature test and salt spray test have been established for 8 month, and the reliability tests are accomplished. The test results of the heavy sluice gate hydraulic cylinder which is produced and tested initially in Korea are satisfied the durability life cycle on the using conditions.

  • PDF

Evaluation of Flow Accelerated Corrosion of Carbon Steel with Rotating Cylinder (Rotating cylinder를 이용한 탄소강의 유동가속부식 평가)

  • Park, Tae Jun;Lee, Eun Hee;Kim, Kyung Mo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.257-262
    • /
    • 2012
  • Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. Rotating cylinder FAC test facility was designed and fabricated and then performance of the facility was evaluated. The facility is very simple in design and economic in fabrication and can be used in material and chemistry screening test. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO), and temperature. Fluid velocity is controlled with rotating speed of the cylinder with a test specimen. FAC test of SA106 Gr. B carbon steel under 4 m/s flow velocity was performed with the rotating cylinder at DO concentration of less than 1 ppb and of 1.3 ppm. Also a corrosion test of the carbon steel at static condition, that is at zero fluid velocity, of test specimen and solution was performed at pH from 8 to 10 for comparison with the FAC data. For corrosion test in static condition, the amount of non adherent corrosion product was almost constant at pH ranging from 8 to 10. But adherent corrosion product decreased with increasing pH. This trend is consistent with decrease of Fe solubility with an increase in pH. For FAC test with rotating cylinder FAC test facility, the amount of non adherent corrosion product was also almost same for both DO concentrations. The rotating cylinder FAC test facility will be further improved by redesigning rotating cylinder and FAC specimen geometry for future work.

Steady Flow Characteristics of Four-Valve Cylinder Heads (실린더헤드 형상에 따른 정상유동 특성)

  • 배충식;정경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.197-205
    • /
    • 1996
  • The flow characteristics of five different 4-valve cylinder heads were investigated in a steady flow rig using laser-Doppler velocimetry. The tumble flow of each head with pentroof combustion chamber was quantified by nondimensional tumble number using a tumble adaptor. The formation of tumbling vortex was examined in an optical single-cylinder engine which has windows for in-cylinder LDV measurements. Tumble vortex ratio was estimated from the tumble flow measurement. The four-valve cylinder heads with pent-roof combustion chamber showed the tumble vortex from the intake process, which was investigated in the steady flow test. The tumble adaptor which converts the tumble into swirl flow was found to be feasible in predicting the tumble flow in the real engine. The tumble strength in the steady flow test coincides with that in the real engine experiment within 15%. It was found that the steady flow test on the four-valve cylinder heads provides the tip for a better design of cylinder head.

  • PDF

The Error Analysis of Leak Measurement for Pneumatic Cylinder Using Isothermal Chamber

  • Jang, Ji-Seong;Ji, Sang-Won;Kagawa, Toshiharu
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.1
    • /
    • pp.6-12
    • /
    • 2008
  • ISO pneumatic cylinder reliability test requires air leakage measurement. Air cylinder has many parts and the leakage shall be measured before, during and after endurance test, and, the leakage should smaller than the specified value. The existing measurement method needs complex operation and the calibration of leak detector, and, has to separate the testing cylinder from endurance test device, which causes the change of contact condition of seal in the cylinder. Therefore, it is hard to evaluate the air leakage during endurance test, and guarantee the reliability of the conventional measurement method. In this paper, a new method for air leakage measurement using isothermal chamber, which does not requires calibration or temperature compensation, and, can measure air leakage accurately with quite simple operations, is proposed. As a result, reliability of air leakage measurement can be improved because the proposed method does not have to separate the testing cylinder from the endurance test device for air leakage measurement. The effectiveness of the proposed method is proved by error analysis of leak measurement from experimental result.

  • PDF

A Study for the Safety on the Flame Exposure of the Propane Cylinder (소형 프로판 용기의 화염 노출에 대한 안전성 연구)

  • Yim, Sang-Sik;Jang, Kap-Man;Lee, Jin-Han;Park, Gi-Dong;Kim, Ki-Bum
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.36-40
    • /
    • 2015
  • To evaluate the safety of propane cylinder, the flame test was performed by the flame exposure scenario of propane cylinder. The cylinder which was exposed in a flame was rapidly occurred to increase the internal pressure by liquid expansion, if so it cause of physical explosion. Therefore, the cylinder which was applied with thermal pressure relief device sholud be not bursted and the propane should be discharged to outside safely. The flame average temperature that was around of cylinder is $600^{\circ}C$, and then it increased $700^{\circ}C$ by discharged propane. The result of flame test, the cylinder was deformed, but it was not bursted. The regulations of flame exposure test for propane cylinder were not restricted, this paper can be applied to restrict the flame test if the cylinder is possible to expose the flame. Also, the results is expected as reference for estimation of the pressure cylinder performance.

The Design, Structural Analysis and High Pressure Chamber Test of a Thick Pressure Cylinder for 2000 m Water Depth (수심 2000m 용 두꺼운 내압용기의 설계, 구조해석과 내압시험)

  • Choi, Hyeuk-Jin;Lee, Jae-Hwan;Kim, Jin-Min;Lee, Seung-Guk;Maring, Kothilngam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.144-153
    • /
    • 2016
  • This paper aims to demonstrate the design, structure analysis, and hydrostatic pressure test of the cylinder used in 2000m water depth. The cylinder was designed in accordance with ASME pressure vessel design rule. The 1.5 times safety factor required by the general rule was applied to the design of the cylinder, because ASME rule is so excessive that it is not proper to apply to the hydrostatic pressure test. The finite element analysis was conducted for the cylinder. The cylinder was produced according to the design. The hydrostatic pressure test was conducted at the hyperbaric chamber in KRISO. The results of finite element analysis(FEM) and those of the hydrostatic pressure test were almost the same, which showed that the design was exact and reliable.

Characteristics of fluctuating lift forces of a circular cylinder during generation of vortex excitation

  • Kim, Sangil;Sakamoto, Hiroshi
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.109-124
    • /
    • 2006
  • This paper describes the characteristics of the fluctuating lift forces when a circular cylinder vibrates in the cross-flow direction. The response characteristics on elastically supported the circular cylinder was first examined by a free-vibration test. Next, flow-induced vibrations obtained by the free-vibration test were reproduced by a forced-vibration test, and then the characteristics of the fluctuating lift forces, the work done by the fluctuating lift, the behavior of the rolling-up of the separated shear layers were investigated on the basis of the visualized flow patterns. The main findings were that (i) the fluctuating lift forces become considerably large than those of a stationary circular cylinder, (ii) negative pressure generates on the surface of the circular cylinder when the rolling-up of separated shear layer begins, (iii) the phase between the fluctuating lift force and the cylinder displacement changes abruptly as the reduced velocity $U_r$ increases, and (iv) whether the generating cross-flow vibration becomes divergent or convergent can be described based on the work done by the fluctuating lift force. Furthermore, it was found that the generation of cross-flow vibration can be perfectly suppressed when the small tripping rods are installed on the surface of the circular cylinder.

A Study on the Behavior of Ambient Hydraulic Cycling Test for 70 MPa Type3 Hydrogen Composite Cylinder (70 MPa용 Type 3 수소 복합용기의 상온수압반복 거동에 관한 연구)

  • Cho, Sung-Min;Kim, Chang-Jong;Kim, Young-Gyu
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.46-50
    • /
    • 2012
  • The performance of the Type3 hydrogen composite cylinder whose pressure is 70 MPa using hydrostatic cycling test equipment was evaluted in this study. It also includes the finite element method analysis on the performance of the cylinder when the pressure is applied. As a result, cylinder body parts of the Type3 hydrogen composite cylinder, which draws attention with its safe status and the lightness, was ruptured first and the same result has been found out through the finite element method. The dome knuckle and the cylinder body were proved as the weakest parts since the cylinder body parts was expanded under the pressure.

A Study on Validation of Accelerated Model for Pneumatic Cylinder (공기압 실린더 가속모형의 유효성 평가에 관한 연구)

  • Kang, Bo-Sik;Kim, Hyoung-Eui;Chang, Mu-Seong;Song, Chang-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1139-1143
    • /
    • 2009
  • Pneumatic cylinder is widely used as key component of various industry fields just like automation production line. Recently, people begin to pay attention to reduce development period and cost of pneumatic cylinder so research requirements of accelerated life test of pneumatic cylinder have been increased more than ever. In this research, we shall evaluate availability of acceleration model by statistical analysis of acceleration model's predicted value and life data which acquired in a real operation condition after finish accelerated life test of pneumatic cylinder. Also to predict the life of pneumatic cylinder in the operation condition we shall develop new acceleration model equations.

Study on the Accelerated Test Condition of Pneumatic Cylinder (공기압 실린더 가속시험 조건에 대한 연구)

  • Kang, Bo-Sik;Kim, Hyoung-Eui;Gobin, Remi
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1648-1651
    • /
    • 2007
  • The goal of this paper is to introduce two methods to determine a model for the accelerated factor equation for pneumatic cylinder according to the Black equation shape. The loads consist of working pressure and temperature and we adjust these two parameters to reduce the test time but keeping the true behavior of deterioration. The first part will introduce a method using accelerated factor coming from experimental results to determine the coefficient of the Black equation by the method of the least square theory. The second part will introduce another method based on various conditions of test with the assumption that the effect of temperature and the effect of pressure on the life of pneumatic cylinder are independent. In these two cases, the results are the unknown coefficients of the Black equation.

  • PDF