• Title/Summary/Keyword: cyclosulfamuron

Search Result 6, Processing Time 0.022 seconds

Effect of Cyclosulfamuron on Rice Growth and Acetolactate Synthase Activity (Cyclosulfamuron이 벼의 생육과 Acetolactate Synthase 활성에 미치는 영향)

  • Ji, Seung-Hwan;Song, Sung-Do;Jeong, Byeong-Ryong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.36-40
    • /
    • 2003
  • Cyclosulfamuron a herbicide of sulfonylurea type, is a relatively new compound which control broad leaves and perennial weeds in rice field. However, this herbicide has a minor disadvantage of decreasing rice plant growth, especially in early growth stage. Therefore, far introducing this cyclosulfamuron as a herbicide in rice field, it is important to minimize the suppression of early plant growth with maintaining weed control efficacy. This study was conducted to evaluate effects of cyclosulfamuron early plant growth and acetolactate synthase activity of rice (Oryza sativa cv Dongjinbyeo, Hwasungbyeo, Ilpumbyeo). Rice growth was inhibited by cyclosulfamuron in their early growth stage. The concentrations required far 50% inhibition of Dongjinbyeo, Hwasungbyeo and Ilpumbyeo growth were 6.3, 9.2 and 146.mg/kg, respectively. Inhibition effect of cyclosulfamuron on the root elongation was greater than the effect on the shoot growth. Concentrations required far 50% inhibition of acetolactate synthase activity from Dongjinbyeo, Hwasungbyeo, Ilpumbyeo were 42.7, 32.7 and $56.7\;{\mu}M$, respectively.

Dissipation of Cyclosulfamuron in Rice Paddies (수도 재배환경 중 제초제 Cyclosulfamuron의 잔류특성)

  • Lee, Young-Deuk;Song, Sung-Do
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2001
  • Several experiments including persistence, distribution, leaching, and terminal residue trials were carried out to investigate the behavior of cyclosulfamuron in rice paddies. Cyclosulfamuron was gradually dissipated in two different soils showing the first-order kinetics. Half-lives of the herbicide were calculated to be $17{\sim}30$ and $14{\sim}16$ days under field and laboratory conditions, respectively. In the paddy soil/water system, the residue tended to reside more in the soil phase as time elapsed. Cyclosulfamuron was less persistent in paddy water than in soil with half-lives of 10 and 19 days, respectively. No cyclosulfamuron was leached below 20 cm-deep soil during water percolation with 50 cm hydraulic head, while some downward mobility was observed within the soil column. When EC and SC formulations of cyclosulfamuron were applied to the paddy field at 120 or 150-day pre-harvest intervals, its terminal residues in hulled rice were all less than 0.01 mg/kg, irrespective of formulation type and application timing. In rice straw, however, some residues were found at $<0.02{\sim}0.05$ mg/kg as SC formulation was applied. Rapid dissipation, restricted mobility, and low terminal residues of cyclosulfamuron in rice paddies suggest that no significant residues would be transported or carried over to the non-target environment.

  • PDF

High-Performance Liquid Chromatographic Determination of Cyclosulfamuron Residues in Soil, Water, Rice Grain and Straw

  • Lee, Young-Deuk;Kwon, Chan-Hyeok
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.251-257
    • /
    • 2004
  • Analytical methods were developed to determine cyclosulfamuron residues in soil, water, rice grain and straw using high-performance liquid chromatography (HPLC) with ultraviolet absorption detection. In these methods, cyclosulfamuron was extracted with aqueous $Na_2HPO_4$/acetone and acetone/methanol mixture from soil and rice samples respectively. Liquid-liquid partition coupled with ion-associated technique, Florisil column chromatography, and solid-phase extraction (SPE) were used to separate cyclosulfamuron from interfering co-extractives prior to HPLC analysis. For water sample, the residue was enriched in $C_{18}$-SPE cartridge, cleaned up in situ, and directly subjected to HPLC. Reverse-phase HPLC under ion-suppression was successfully applied to determine cyclo-sulfamuron in sample extracts with the detection at its ${\lambda}_{max}$ (254 nm). Recoveries from fortified samples averaged $87.8{\pm}7.1%$ (n=12), $97.3{\pm}7.2%$ (n=12), $90.8{\pm}6.6%$ (n=6), and $78.5{\pm}6.7%$ (n=6) for soil, water, rice grain and straw, respectively. Detection limits of the methods were 0.004 mg/kg, 0.001 mg/L, 0.01 mg/kg and 0.02 mg/kg for soil, water, rice grain and straw samples, respectively.

Herbicidal Efficacy of Bispyribac-sodium Combined with Other Herbicides for Annual Bluegrass(Poa annua L.) Suppression (새포아풀(Poa annua L.) 방제를 위한 Bispyribac-sodium과 타약제와의 혼합 상호작용)

  • Park, Nam-Il;Lee, In-Yong;Park, Jae-Eup;Kim, Ho-Jun;Chun, Jae-Chul;Ogasawara, Masaru
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.1
    • /
    • pp.39-49
    • /
    • 2007
  • Bispyribac-sodium is a new-type herbicide that prevents the occurrence of annual bluegrass by the suppression of anthesis and inflorescence emergence on the bent green. The greenhouse experiment was conducted to investigate interaction effect of the bispyribac-sodium with 21 soil- and foliar-applied herbicides in regards of herbicidal activity of annual bluegrass. The remarkable synergism was not found on the combination of bispyribac-sodium with benfluralin, pendimethalin, oryzalin, siduron, chlorphtalim, isoxaben, bifenox, tenylchlor, indanofan, bentazone, imazosulfuron, imazaquin, halosulfuron-methyl and limsulfuron. However, mixture of bispyribac-sodium with mecoprop, triclopyr, metsulfuron-methyl, cyclosulfamuron, pyrazosulfuron-ethyl and pyributicarb produced greater synergism of herbicidal activity when compared with unmixed, single application. Phytotoxicity was low on bentgrass green and fast recovery was observed. In future, it would be strongly necessary to do research to Investigate the effect of bispyribac-sodium combination with other herbicides under various environment and management practices on-site bentgrass green.

Effective Herbicides for Control of Sulfonylurea-Resistant Monochoria vaginalis in Paddy Field

  • Kuk, Yong-In;Kwon, Oh-Do
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.4
    • /
    • pp.286-291
    • /
    • 2003
  • Monochoria vaginalis is one of the most troublesome resistant weeds in Korean rice culture. Thus, the objectives of this study were to evaluate the response of M. vaginalis resistant to sulfonylurea(SU) herbicides and to determine alternative herbicides for the control of resistant M. vaginalis in direct seeded and transplanted rice culture in Korea. In greenhouse studies, the resistant biotype was 31-, 38-, 3172-, and 7-fold more resistant to ben-sulfuron-methyl, cyclosulfamuron, imazosulfuron, and pyrazosulfuron-ethyl, respectively, than the susceptible biotype, indicating cross-resistance to the SU herbicides used in this study. Non-SU herbicides, butachlor, carfentrazone-ethyl, mefenacet, pretilachlor, pyrazolate, and thiobencarb, several SU herbicide-based mixtures, ethoxysulfuron plus fentrazamide, pyrazosulfuron-ethyl plus pyrazolate plus simetryn, and non-SU herbicide-based mixtures, pyrazolate plus butachlor, pyrazolate plus pretilachlor, simetryn plus molinate, carfentrazone-ethyl plus butachlor, and carfentrazone-ethyl plus thiobencarb can be used to control both the resistant and susceptible biotypes of M. vaginalis when applied before the second leaf stage. In the field experiment, the resistant biotype of M. vaginalis that survived from the paddy fields treated with a SU herbicide-based mixture could effectively be controlled by using mixtures of bentazone plus MCPA, bentazone plus mecoprop-P, and bentazone plus 2,4-D when applied at 2 or 4 main leaves. Our results suggest that the SU-resistant M. vaginalis had not developed multiple resistances to herbicides with different modes of action. In particular, bentazone plus MCPA and bentazone plus mecoprop-P were effective control measures after failure to control resistant M. vaginalis in Korean rice culture.

Fact-finding Survey on Occurrence of Weeds and Herbicide Usage for Paddy Rice Cultivation in Gyeonggi Province, Korea (경기지역 논잡초 발생양상 및 제초제 사용실태)

  • Won, Taejin;Park, Jungsu;Kim, Soonjae;Kim, Heedong
    • Weed & Turfgrass Science
    • /
    • v.2 no.4
    • /
    • pp.352-357
    • /
    • 2013
  • A survey was performed to investigate major paddy field weeds and frequently used herbicides in Gyeonggi province, Korea in order to establish a system to efficiently control herbicide-resistant weeds. The dominant paddy field weeds included Echinochloa spp. (22%), Eleocharis kuroguwai (14%), Sagittaria trifolia (13%), Scirpus juncoides (12%), Monochoria vaginalis (9%) and Sagittaria pygmaea (7%), and the most widely used herbicides were butachlor 33% CS (25%), benzobicyclon + fentrazamide + imazosulfuron 11.5% SC (9%), cyclosulfamuron + mefenacet 22.2% SC (9%), butachlor 5% GR (6%), and oxadiazon 12% EC (6%) in Gyeonggi province, Korea. Many paddy rice growers considered S. juncoides, M. vaginalis, S. pygmaea and C. difformis as herbicide-resistant weeds. An extensive research deserves to be conducted to monitor occurrence of herbicideresistant paddy weeds in Gyeonggi province, Korea.