• 제목/요약/키워드: cycloheximide

검색결과 173건 처리시간 0.033초

Streptozotocin, an O-GlcNAcase Inhibitor, Stimulates $TNF\alpha -Induced$ Cell Death

  • Yang Won-Ho;Ju Jung-Won;Cho Jin Won
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2004년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.65-67
    • /
    • 2004
  • O-GlcNAcylation of p53 has been already identified and reported, but the function of O-GlcNAc on p53 has not been studied well. In this report, the general function of O-GlcNAc modification on p53 has been investigated using mouse fibroblast cell, L929. When streptozotocin (STZ), a non-competitive O-GlcNAcase inhibitor was treated to L929, O-GlcNAc modification level was dramatically increased on nucleocytoplasmic proteins, including p53. Because it has been already reported that $TNF\alpha$ induced the production of p53 in L929, $TNF\alpha$ was treated to obtain more p53. Approximately two times more amount of p53 was found from the cells treated STZ and $TNF\alpha$ simultaneously compared to the cell treated $TNF\alpha$ alone. The p53 increment in the presence of STZ was not caused by the induction of p53 gene expression. When new production of p53 induced by the $TNF\alpha$ was inhibited by the treatment of cycloheximide, O-GlcNAc modification decreased and phosphorylation increased on pre-existing p53 after $TNF\alpha$ treatment. But in the presence of STZ and $TNF\alpha$ at the same time, more O-GlcNAcylation occurred on p53, The level of ubiquitination on p53 was also reduced in the presence of STZ. Approximately three times less amount of Mdm2 bound to this hyperglycosylated p53. From this result it might be concluded that treatment of STZ to inhibit O-GlcNAcase increased O-GlcNAc modification level on p53 and the increment of O-GlcNAc modification stabilized p53 from ubiquitin proteolysis system.

  • PDF

Effect of Oocyte Activation Regimens on Ploidy of Nuclear Transfer Embryos Reconstructed with Fetal Fibroblasts in Rabbit

  • Yoo, Jae-Gyu;Rho, Gyu-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.718-724
    • /
    • 2007
  • Considerable attention has been focused on the cloning of mammalian embryos, as a consequence of poor development, in order to enhance the application of genetic engineering. Experiments were conducted to compare the developmental competence of parthenotes and reconstructed (NT) rabbit eggs with fetal fibroblasts (FFs) following various activation regimens. Oocytes and NT eggs were exposed to: electric stimulation (EST, Group 1) and EST followed by 6-dimethylaminopurine (DMAP, Group 2), cycloheximide (CHX, Group 3) or DMAP/CHX (Group 4). Pronuclear (PN) status, cleavage, blastocyst development and the ploidy were assessed. In parthenote groups 1, 2, 3 and 4, the PN formation differed significantly. And, the cleavage and blastocyst rates were 41.7 and 5%, 75.6 and 53.7%, 68 and 36%, 82.1 and 52.6%, respectively, among treatments. Polyploidy was observed in 17.2% of EST plus DMAP and 44.9% of EST plus DMAP/CHX groups. In SCNT groups (Group 1, 2, 3 and 4), the cleavage and blastocyst rates were 28.6 and 7.1%, 58.3 and 29.2%, 56.8 and 24.1%, 64.5 and 27.8%, respectively. The chromosomal composition differed significantly (p<0.05) among treatments. In Group 2 and 3, 53.8% and 81.8% of embryos revealed diploid chromosomal sets, respectively. However, in Group 4, 53.3% of embryos showed abnormal ploidy (mixoploid). Although DMAP or combination with DMAP/CHX resulted in higher in vitro development of rabbit SCNT embryos, higher incidence of chromosomal abnormality may induce problems related to fetal loss of at late stage of development.

Comparison of Neurotoxicity Induced by Some Glutathione Depletors in Mouse Cortical Cell Cultures

  • Lee, Gee-Woon;Lee, Kuy-Sook;Park, Sah-Hoon;Bae, Choon-Sang;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권3호
    • /
    • pp.177-183
    • /
    • 2000
  • We examined the neurotoxic effects of 3 glutathione (GSH) depletors, buthionine sulfoximine (BSO), diethyl maleate (DEM) and phorone, under the presence of trolox, cycloheximide (CHX), pyrrolidine dithiocarbamate (PDTC) or MK-801 in primary mouse cortical cell cultures. All three depletors induced neuronal death in dose and exposure time dependent manner, and decreased total cellular GSH contents. The patterns of the neuronal death and the GSH decrements were dependent on the individual agents. DEM $(200\;{\mu}M)$ induced rapid and irreversible decrement of the GSH. BSO (1 mM) also decreased the GSH irreversibly but the rate of decrement was more progressive than that of DEM. Phorone (1 mM) reduced the GSH content to 40% by 4 hr exposure, that is comparable to the decrement of BSO, but the GSH recovered and reached over the control value by 36 hr exposure. BSO showed a minimal neurotoxicity $(0{\sim}10%)$ at the end of 24 hr exposure, but marked neuronal cell death at the end of 48 hr exposure. The BSO (1 mM)-induced neurotoxicity was markedly inhibited by trolox or CHX and partially attenuated by MK-801. DEM induced dose-dependent cytotoxicity at the end of 24 hr exposure. Over the doses of $400\;{\mu}M,$ glial toxicity also appeared. DEM $(200\;{\mu}M)-induced$ neurotoxicity was markedly inhibited by trolox or PDTC. Phorone (1 mM) induced moderate neurotoxicity (40%) at the end of 48 hr exposure. Only CHX showed significant inhibitory effect on the phorone-induced neurotoxicity. These results suggest that the GSH depletors induce neuronal injury via different mechanisms and that GSH depletors should be carefully employed in the researches of neuronal oxidative injuries.

  • PDF

A Study about the Mechanism of $Ca^{2+}$ and Pi Homeostasis by Estradiol 17$\beta$ in Proximal Tubule Cells in the Osteoporosis

  • Han Ho-jae;Park Soo-Hyun
    • 대한의생명과학회지
    • /
    • 제10권4호
    • /
    • pp.375-383
    • /
    • 2004
  • It has been reported that osteoporosis induced by the deficiency of estrogens in menopause is associated with the unbalance of Ca/sup 2+/ and Pi levels. Proximal tubule is very important organ to regualte Ca/sup 2+/ and Pi level in the body. However, the effect of estrogens on Ca/sup 2+/ and Pi regulation was not elucidated. Thus, we examined the effect of 17-β estradiol (E₂) on Ca/sup 2+/ and Pi uptake in the primary cultured rabbit renal proxiaml tubule cells. In the present study, E₂(> 10/sup -9/M) decreases Ca/sup 2+/uptake and stimulates Pi uptake over 3 days. E₂-induced decrease of Ca/sup 2+/ uptake and stimulation of Pi uptake were blocked by actinomycin D (a gene transcription inhibitor), cycloheximide (a protein synthesis inhibitor). tamoxifen, and progesterone (estrogen receptor antagonists). E₂-induced decrease of Ca/sup 2+/ uptake and stimulation of Pi uptake were blocked by SQ22536 (an adenylate cyclase inhibitor), Rp-cAMP (a cAMP antagonist), and PKI (a protein kinase A inhibitor). Indeed, E₂ increased cAMP formation. In addition, E₂-induced decrease of Ca/sup 2+/ uptake and stimulation of Pi uptake were blocked by staurosporine, H-7, and bisindolylmaleimide I (protein kinase C inhibitors) and E₂ translocated PKC from cytoslic fraction to membrane fraction. In conclusion, E₂ decreased Ca/sup 2+/ uptake and stimulated Pi uptake via cAMP and PKC pathway in the PTCs.

  • PDF

FADD Phosphorylation Modulates Blood Glucose Levels by Decreasing the Expression of InsulinDegrading Enzyme

  • Lin, Yan;Liu, Jia;Chen, Jia;Yao, Chun;Yang, Yunwen;Wang, Jie;Zhuang, Hongqin;Hua, Zi-Chun
    • Molecules and Cells
    • /
    • 제43권4호
    • /
    • pp.373-383
    • /
    • 2020
  • Our previous study revealed a novel role of Fas-associated death domain-containing protein (FADD) in islet development and insulin secretion. Insulin-degrading enzyme (IDE) is a zinc metalloprotease that selectively degrades biologically important substrates associated with type 2 diabetes (T2DM). The current study was designed to investigate the effect of FADD phosphorylation on IDE. We found that the mRNA and protein levels of IDE were significantly downregulated in FADD-D mouse livers compared with control mice. Quantitative real-time polymerase chain reaction analysis showed that FADD regulates the expression of IDE at the transcriptional level without affecting the stability of the mRNA in HepG2 cells. Following treatment with cycloheximide, the IDE protein degradation rate was found to be increased in both FADD-D primary hepatocytes and FADD-knockdown HepG2 cells. Additionally, IDE expression levels were reduced in insulin-stimulated primary hepatocytes from FADD-D mice compared to those from control mice. Moreover, FADD phosphorylation promotes nuclear translocation of FoxO1, thus inhibiting the transcriptional activity of the IDE promoter. Together, these findings imply a novel role of FADD in the reduction of protein stability and expression levels of IDE.

Pathophysiological Implication of Ganglioside GM3 in Early Mouse Embryonic Development through Apoptosis

  • Ju Eun-Jin;Kwak Dong-Hoon;Lee Dae-Hoon;Kim Sung-Min;Kim Ji-Su;Kim Sun-Mi;Choi Han-Gil;Jung Kyu-Yong;Lee Seo-ul;Do Su-Il;Park Young-Il;Choo Young-Kug
    • Archives of Pharmacal Research
    • /
    • 제28권9호
    • /
    • pp.1057-1064
    • /
    • 2005
  • Apoptosis may occur in early embryos where the execution of essential developmental events has failed, and gangliosides, sialic acid-conjugated glycosphingolipids, are proposed to regulate cell differentiation and growth. To evaluate the regulatory roles of ganglioside GM3 in early embryonic development, this study examined its expressional patterns in apoptotic cells during early embryonic development in mice. Pre-implanted embryos were obtained by in vitro fertilization, which were treated at the 4-cell stage with three the apoptosis inducers, actinomycin D, camptothecin and cycloheximide, for 15 h. All three inducers significantly increased the percentage of apoptotic cells, as measured using a TUNEL method, but remarkably reduced the total cell numbers. The numbers of morula and blastocyst stages were significantly decreased by treatment of the embryos with the three apoptosis inducers compared with the control, with a similar result also observed in the number of blastomeres. Staining of early embryos with Hoechst 33342 revealed a significant percentage of apoptotic nuclei. Prominent immunofluo­rescence microscopy revealed a significant difference in the ganglioside GM3 expression in apoptotic embryos compared with the control, and RT-PCR also demonstrated a dramatic increase in ganglioside GM3 synthase mRNA in the apoptotic embryos. These results suggest that ganglioside GM3 may be pathophysiologically implicated in the regulation of early embryonic development through an apoptotic mechanism.

마우스 치주인대 섬유모세포에서 RANKL 조절에 대한 p38 MAP kinase의 역할 (The role of p38 MAP kinase on RANKL regulation in mouse periodontal ligament fibroblasts)

  • 김재철;최득철;김영준
    • Journal of Periodontal and Implant Science
    • /
    • 제37권sup2호
    • /
    • pp.311-323
    • /
    • 2007
  • Receptor activation of nuclear factor ${\kappa}$ B ligand (RANKL)은 파골세포의 분화와 기능에 중요한 역할을 하는 단백질로 이들 물질의 조절에는 p38 MAP kinase가 관여한다. 그러나 치주인대 섬유모세포에서 RANKL 발현 시 p38 MAP kinase의 역할은 잘 알려져 있지 않다. 이에 이번 연구는 마우스 치주인대 섬유모세포의 $IL-1{\beta}-induced$ RANKL 발현과정에서 p38의 역할을 규명하고자 하여 다음과 같은 결과를 얻었다. 마우스 치주인대 섬유모세포에 $IL-1{\beta}$ (1ng/ml)의 자극은 수용성 RANKL의 합성을 증가시켰다. 수용성 RANKL의 합성은 p38 MAP kinase 억제제인 SB203580에 의해 농도 의존적으로 억제되었으나 다른 MAP kinase 억제제인 SP600125, JNK 억제제와 PD98059, ERK 억제제에 의해서는 수용성 RANKL의 합성이 조절되지 않았다. NF-kB 억제제에 의해서도 수용성 RANKL의 합성이 억제되지 않았다. RANKL 유전자의 발현은 $IL-1{\beta}$로 자극 시에는 대조군에 비해 약 5배의 발현 증가를 보였으나 SB203580으로 전처치 시 $IL-1{\beta}$ (1ng/ml)로 자극시보다 약 1.5배의 감소를 보였다. 그러나 SP600125, PD98059, 및 NF-kB 억제제로 전처치한 경우에는 $IL-1{\beta}$로 자극한 경우와 비슷한 수준을 보였다. $IL-1{\beta}$로 자극 시 RANKL 유전자의 반감기가 90분 이었으나 SB203580로 전처치 후 $IL-1{\beta}$로 자극 시 RANKL 유전자의 반감기는 60분으로 감소하였다. Cycloheximide 전처리 시 SB203580에 의한 RANKL 유전자 발현 억제가 관찰되지 않았다. 단백질 분석결과 p38 MAP kinase의 인산화 활성은 30분까지 증가하였으나 그 이후 감소하여 2시간째에는 그 발현이 미약하였다. SB203580로 전처치 후 $IL-1{\beta}$로 자극 시 p38 MAP kinase의 인산화 활성이 감소하였다. 이상의 결과는 p38 MAP kinase가 RANKL 유전자 조절에 중요한 역할을 담당하고 있음을 시사한다.

Role of p38 MAPK in the Regulation of Apoptosis Signaling Induced by TNF-α in Differentiated PC12 Cells

  • Park, Jung-Gyu;Yuk, Youn-Jung;Rhim, Hye-When;Yi, Seh-Yoon;Yoo, Young-Sook
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.267-272
    • /
    • 2002
  • TNF-$\alpha$ elicits various responses including apoptosis, proliferation, and differentiation according to cell type. In neuronal PC12 cells, TNF-$\alpha$ induces moderate apoptosis while lipopolysarccaharide or trophic factor deprivation can potentiate apoptosis that is induced by TNF-$\alpha$. TNF-$\alpha$ initiates various signal transduction pathways leading to the activation of the caspase family, NF-${\kappa}B$, Jun N-terminal kinase, and p38 MAPK via the death domain that contains the TNF-$\alpha$ receptor. Inhibition of translation using cycloheximide greatly enhanced the apoptotic effect of TNF-$\alpha$. This implies that the induction of anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic Bcl-2 family member, was highly expressed in response to TNF-$\alpha$. In this study, we examined the anti-apoptotic role of p38 MAPK that is activated by TNF-$\alpha$ in neuronal PC12 cells. The phosphorylation of p38 MAPK in response to TNF-$\alpha$ slowly increased and lasted several hours in the PC12 cell and DRG neuron. This specific inhibitor of p38 MAPK, SB202190, significantly enhanced the apoptosis that was induced by TNF-$\alpha$ in PC12 cells. This indicates that the activation of p38 MAPK could protect PC12 cells from apoptosis since there is no known role of p38 MAPK in resoonse to TNF-$\alpha$ in neuron. This discovery could be evidence for the neuroprotective role of the p38 MAPK.

The IGFBP-1 mRNA Expression in HepG2 Cells is Affected by Inhibition of Heme Biosynthesis

  • Park, Jong-Hwan;Park, Tae-Kyu;Kim, Hae-Yeong;Yang, Young-Mok
    • BMB Reports
    • /
    • 제34권4호
    • /
    • pp.385-389
    • /
    • 2001
  • Insulin-like growth factor binding protein-1 (IGFBP-1) appears to be an important modular of the insulin growth factor (IGF) bioactivity in metabolic disease and chronic hypoxia. Treatment of desferrioxamine (Dfo), cobalt, or nickel in HepG2 cells stimulated the expression of IGFBP1 mRNA as hypoxia. However, the presence of ferric ammonium citrate (FAC) in the 1% $O_2$ decreased the upregulation of the IGFBP-1 mRNA expression. In addition, actinomycin D and cycloheximide abolished the increase in the expression of IGFBP-1 mRNA that was induced by Dfo and transition metals (cobalt and nickel). To obtain further information about the putative oxygen sensor, we postulate that putative heme proteins, responsible for the oxygen-sensing process in HepG2 cells, should be sensitive to hypoada. The mechanism of these upregulations of the IGFBP-1 mRNA expression by Dfo and transition metals was investigated by treatment with 2 mM of 4,6-dioxoheptanoic acid (DHA), an inhibitor of heme biosynthesis. The results showed that 1% $O_2$-, Dfo-, cobalt-, or nickel induced IGFBP-1 mRNA expressions in HepG2 cells were all markedly inhibited when the heme synthesis was blocked by DHA. We suggest that the IGFBP-1 mRNA expression in the HepG2 cell is regulated by 1% $O_2$, Dfo, cobalt, or nickel, implicating the involvement of the putative heme-containing oxygensensing molecule.

  • PDF

Regulation of HMG-CoA Reductase mRNA Stability by 25-hydroxycholesterol

  • Park, Jae-Won;Oh, Seung-Min
    • Preventive Nutrition and Food Science
    • /
    • 제5권4호
    • /
    • pp.184-188
    • /
    • 2000
  • HMG-CoA reductase is th rate-limiting enzyme of cholesterol biosynthesis. As intracellular levels of cholesterol should be regulated elaborately in response to external stimuli an internal needs, the expression of the HMG-CoA reductase gene is regulated intricately at several different levels from transcription to post-translational modification. In this study, we investigated the regulatory mechanism of HMG-CoA reductase gene expression at the post-transcriptional/pre-translational levels in a baby hamster kidney cell line, C100. when 25-hydroxycholesterol was added to cells cultured in medium containing 5% delipidized fetal bovine serum and 25$\mu$M lovastatin, the levels of HMG-CoA reductase mRNA decreased rapidly, which seemed to be due to the increased degradation of reductase mRNA. These suppressive effects of 25-hydroxycholesterol on MG-CoA reductase mRNA levels were blocked by a translation inhibitor, cycloheximide. Similarly, actinomycin D and 5,6-dichloro-1-$\beta$-D-ribofuranosylbenzimidazole, transcription inhibitors, blocked the 25-hydroxycholesterol-mediated degradation of HMG-CoA reductase mRNA. These results indicate that new protein/RNA synthesis is required for the degradation of HMG-CoA reductase mRNA. In addition, data from the transfection experiments shows that cis-acting determinants, regulating the stability of reductase mRNA, were scattered in the sequence corresponding to 1766-4313 based on the sequence of Syrian hamster HMG-CoA reductase cDNA. Our data suggests that sterol-mediated destabilization of reductase mRNA might be one of the important regulatory mechanism of HMG-CoA reductase gene expression.

  • PDF