• Title/Summary/Keyword: cycling system

Search Result 282, Processing Time 0.023 seconds

Control of FES Cycling Considering Muscle Fatigue (근피로를 고려한 FES 싸이클링의 제어)

  • Kim Chul-seung;Hase Kazunori;Kang Gon;Eom Gwang-moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.207-212
    • /
    • 2005
  • The purpose of this work is to develop the FES controller that can cope with the muscle fatigue which is one of the most important problems of current FES (Functional Electrical Stimulation). The feasibility of the proposed FES controller was evaluated by simulation. We used a fitness function to describe the effect of muscle fatigue and recovery process. The FES control system was developed based on the biological neuronal system. Specifically, we used PD (Proportional and Derivative) and GC (Gravity Compensation) control, which was described by the neuronal feedback structure. It was possible to control of multiple joints and muscles by using the phase-based PD and GC control method and the static optimization. As a result, the proposed FES control system could maintain the cycling motion in spite of the muscle fatigue. It is expected that the proposed FES controller will play an important role in the rehabilitation of SCI patient.

Analytical framework for natural frequency shift of monopile-based wind turbines under two-way cyclic loads in sand

  • Yang Wang;Mingxing Zhu;Guoliang Dai;Jiang Xu;Jinbiao Wu
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.167-178
    • /
    • 2024
  • The natural frequency shift under cyclic environmental loads is a key issue in the design of monopile-based offshore wind power turbines because of their dynamic sensitivity. Existing evidence reveals that the natural frequency shift of the turbine system in sand is related to the varying foundation stiffness, which is caused by soil deformation around the monopile under cyclic loads. Therefore, it is an urgent need to investigate the effect of soil deformation on the system frequency. In the present paper, three generalized geometric models that can describe soil deformation under two-way cyclic loads are proposed. On this basis, the cycling-induced changes in soil parameters around the monopile are quantified. A theoretical approach considering three-spring foundation stiffness is employed to calculate the natural frequency during cycling. Further, a parametric study is conducted to describe and evaluate the frequency shift characteristics of the system under different conditions of sand relative density, pile slenderness ratio and pile-soil relative stiffness. The results indicate that the frequency shift trends are mainly affected by the pile-soil relative stiffness. Following the relevant conclusions, a design optimization is proposed to avoid resonance of the monopile-based wind turbines during their service life.

The nanoleakage patterns of experimental hydrophobic adhesives after load cycling (Load cycling에 따른 소수성 실험용 상아질 접착제의 nanoleakage 양상)

  • Sohn, Suh-Jin;Chang, Ju-Hae;Kang, Suk-Ho;Yoo, Hyun-Mi;Cho, Byeong-Hoon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.1
    • /
    • pp.9-19
    • /
    • 2008
  • The purpose of this study was: (1) to compare nanoleakage patterns of a conventional 3-step etch and rinse adhesive system and two experimental hydrophobic adhesive systems and (2) to investigate the change of the nanoleakage patterns after load cycling. Two kinds of hydrophobic experimental adhesives, ethanol containing adhesive (EA) and methanol containing adhesive (MA), were prepared. Thirty extracted human molars were embedded in resin blocks and occlusal thirds of the crowns were removed. The polished dentin surfaces were etched with a 35 % phosphoric acid etching gel and rinsed with water. Scotchbond Multi-Purpose (MP), EA and MA were used for bonding procedure. Z-250 composite resin was built-up on the adhesive-treated surfaces. Five teeth of each dentin adhesive group were subjected to mechanical load cycling. The teeth were sectioned into 2 mm thick slabs and then stained with 50 % ammoniacal silver nitrate. Ten specimens for each group were examined under scanning electron microscope in backscattering electron mode. All photographs were analyzed using image analysis software. Three regions of each specimen were used for evaluation of the silver uptake within the hybrid layer. The area of silver deposition was calculated and expressed in gray value. Data were statistically analyzed by two-way ANOVA and post-hoc testing of multiple comparisons was done with the Scheffe's test. Silver particles were observed in all the groups. However, silver particles were more sparsely distributed in the EA group and the MA group than in the MP group (p < .0001). There were no changes in nanoleakage patterns after load cycling.

Postural Balance Rehabilitation using Virtual Reality Technology (가상현실기술을 이용한 자세균형재활훈련에 관한 연구)

  • 이정수;정진석
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.313-318
    • /
    • 1996
  • We proposed a new system for the postural balance rehabilitation training. For the purpose, we used the virtual hiking system using virtual reality technology. We evaluated the system by measuring the parameters such as path deviation, path deviation velocity, cycling time, and head movement. From our results, we verified the usefulness of virtual reality technology in rehabilitation. Our results showed that this system was effective postural balance rehabilitation training device and might be useful as the clinical equipment.

  • PDF

소형위성 기능시험 및 열주기 시험

  • Park, Jong-Oh;Choi, Jong-Yeon;Kwon, Jae-Wook;Youn, Young-Su;Cho, Seung-Won;Kim, Young-Youn;An, Jae-Chel;Choi, Seok-Won
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.58-65
    • /
    • 2003
  • KARI Electrical Test Team performed the SOH (State Of Health) test and Thermal Cycling test for small satellite of KOMPSAT-1 PFM at KARI SITC Highbay as per Storage plan every year, and verified that the system/subsystem units function installed on PFM were good without significant degradation causing from long-term storage. This paper describes the test items, test method, test procedure and selected test result data.

  • PDF

MARGINAL LEAKAGE TEST ON "SILAR" COMPOSITE RESIN (Silar(Composite Resin계)의 변연누출(變緣漏出)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.8 no.1
    • /
    • pp.167-172
    • /
    • 1982
  • The purpose of this study was to evaluate the marginal sealing ability of "Silar". Using freshly extracted human teeth and 2% acquous methylene blue, the marginal leakage of dye in restorative materials such as Silar, Silar with acid etching technique, Hi-Pol, Hi-Pol Enamel Bond system, Adaptic and Amalgam were investigated at $37^{\circ}C$ and under temperature cycling in range of $4^{\circ}C-60^{\circ}C$. The results as follows; 1. All filling materials showed some degree of marginal penetration by 2% methylene blue dye. 2. Silar with acid etching technique revealed effective marginal sealing ability, but under temperature cycling it showed increased marginal leakage. 3. All composite resins showed greater marginal leakage than amalgam restoration. 4. Silar had the most effective marginal sealing ability in experimented composite resins.

  • PDF

Minimizing Empty Trips of Yard Trucks in Container Terminals by Dual Cycle Operations

  • Nguyen, Vu Duc;Kim, Kap-Hwan
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.1
    • /
    • pp.28-40
    • /
    • 2010
  • One of the most important objectives of the schedules in a container terminal is to minimize the ship operation time, which consists of discharging and loading operation times. Recently, dual cycling techniques have been used for improving terminal operations, especially for reducing the total empty trips of handling equipment. The main focus of this study is to reduce the empty trip times of yard trucks with minimum delays for ship operations. A heuristic algorithm, modified from a previous algorithm, is proposed to solve this problem. A simulation study is conducted to evaluate the effect of different types of discharging and loading schedules and different locating methods for discharging containers in terms of the performance of the system, including the percentage of the dual cycle operations of yard trucks.

Electrochemical Signal Amplification by Redox Cycling in Distance-Controlled Nanogap Devices

  • Park, Dae Keun;Park, Jong Mo;Shin, Jong-Hwan;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.269-269
    • /
    • 2013
  • Redox cycling in between the two working electrodes in an electrochemical cell can lead a great signal enhancement. In this work, we report on a systematic examination of current amplification along with the decrease in the gap distance of a nanogap device which was fabricated by the combination of photo and chemical lithography [1]. The gap distance was controlled by the chemical lithographic process of surfacecatalyzed growth of metallic layer on pre-defined electrodes with wider initial gap. Enhancement of the redox current of ferri/ferrocyanide was observed upon gap distance reduction and the current is amplified about a thousand times in this redox system when the gap distance was decreased from 200 nm to 30 nm. The experimental results were discussed on the basis of the cyclic voltammetry (CV), atomic force microscopy (AFM) and scanning electron microscopy (SEM).

  • PDF

Effect of Gas Phase Cycling Modulation of C2H2/SF6 Flows on the Formation of Carbon Coils (탄소 코일 생성에 대한 C2H2/SF6 기체유량의 싸이클릭 변조 효과)

  • Lee, Seok-Hee;Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.178-184
    • /
    • 2012
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and $SF_6$ as an additive gas under thermal chemical vapor deposition system. The characteristics (formation density and morphology) of as-grown carbon coils were investigated as functions of additive gas flow rate and the cycling on/off modulation of $C_2H_2/SF_6$ flows. Even in the lowest $SF_6$ flow rate (5 sccm) in this work, the cycling on/off modulation injection of $SF_6$ flow for 2 minutes could give rise to the formation of nanosized carbon coils, whereas the continuous injection of $SF_6$ flow for 5 minutes could not give rise to the carbon coils formation. With increasing $SF_6$ flow rates from 5 to 30 sccm, the cycling on/off modulation injection of $SF_6$ flow confines the geometry for the carbon coils to the nanosized ones. Fluorine's role of $SF_6$ during the reaction was regarded as the main cause for the confinement of carbon coils geometries to the nano-sized ones.