• Title/Summary/Keyword: cycling system

Search Result 284, Processing Time 0.03 seconds

Item Response Analysis of Energy as a Cross-Cutting Concept for Grades 3 to 9 (기초공통개념으로서 에너지에 대한 3~9학년 학생들의 문항 반응 분석)

  • Kim, Youngmin;Kang, Nam-Hwa;Kang, Hunsik;Maeng, Seungho;Lee, Jun-Ki
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.6
    • /
    • pp.815-833
    • /
    • 2016
  • This study investigated children's (grade 3 to 9) responses to assessment items on energy as a cross-cutting concept in order to get basic information for a learning progression. The assessment consisted of 8 ordered multiple-choice items at the contexts of electric circuit, mechanical energy of falling objects, phase change of matter, dissolution, biological phenomena of a lizard, food chain, radiative equilibrium between Sun and Earth, and the system of water cycling. Children's responses to each item were analyzed with using cross-tabulations in terms of grades and item option levels and Wright map and Differential item functioning based on Rasch modeled item response analysis. The results offered empirical evidence of children's development of understanding energy from relation between energy and its phenomena, types of energy, transfer and conversion of energy, towards conservation and equilibrium of energy for all of eight contexts. Children of each grade did not fully understand energy conservation. As grade goes up, their understandings of energy transfer and conversion were differentiated across the contexts and topics of energy. According to Rasch analysis, children had easier understanding of energy on dissolution and poorer understanding of energy on water cycling than that on other contexts. It was discussed and suggested that the results of this study help us organize science topics with regard to energy when developing new national science curriculum.

Evaluations of Si based ternary anode materials by using RF/DC magnetron sputtering for lithium ion batteries

  • Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.302-303
    • /
    • 2010
  • Generally, the high energy lithium ion batteries depend intimately on the high capacity of electrode materials. For anode materials, the capacity of commercial graphite is unlike to increase much further due to its lower theoretical capacity of 372 mAhg-1. To improve upon graphite-based negative electrode materials for Li-ion rechargeable batteries, alternative anode materials with higher capacity are needed. Therefore, some metal anodes with high theoretic capacity, such as Si, Sn, Ge, Al, and Sb have been studied extensively. This work focuses on ternary Si-M1-M2 composite system, where M1 is Ge that alloys with Li, which has good cyclability and high specific capacity and M2 is Mo that does not alloy with Li. The Si shows the highest gravimetric capacity (up to 4000mAhg-1 for Li21Si5). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. Si thin film is more resistant to fracture than bulk Si because the film is firmly attached to the substrate. Thus, Si film could achieve good cycleability as well as high capacity. To improve the cycle performance of Si, Suzuki et al. prepared two components active (Si)-active(Sn, like Ge) elements film by vacuum deposition, where Sn particles dispersed homogeneously in the Si matrix. This film showed excellent rate capability than pure Si thin film. In this work, second element, Ge shows also high capacity (about 2500mAhg-1 for Li21Ge5) and has good cyclability although it undergoes a large volume change likewise Si. But only Ge does not use the anode due to its costs. Therefore, the electrode should be consisted of moderately Ge contents. Third element, Mo is an element that does not alloys with Li such as Co, Cr, Fe, Mn, Ni, V, Zr. In our previous research work, we have fabricated Si-Mo (active-inactive elements) composite negative electrodes by using RF/DC magnetron sputtering method. The electrodes showed excellent cycle characteristics. The Mo-silicide (inert matrix) dispersed homogeneously in the Si matrix and prevents the active material from aggregating. However, the thicker film than $3\;{\mu}m$ with high Mo contents showed poor cycling performance, which was attributed to the internal stress related to thickness. In order to deal with the large volume expansion of Si anode, great efforts were paid on material design. One of the effective ways is to find suitably three-elements (Si-Ge-Mo) contents. In this study, the Si based composites of 45~65 Si at.% and 23~43 Ge at.%, and 12~32 Mo at.% are evaluated the electrochemical characteristics and cycle performances as an anode. Results from six different compositions of Si-Ge-Mo are presented compared to only the Si and Ge negative electrodes.

  • PDF

Stable Isotope Profiles of the Fossil Mollusks from Marginal Marine Environment: Is Carbon from the Seasonal Methanogenesis?

  • Khim, Boo-Keun;Bock, Kathy-W.;Krantz, David-E.
    • Journal of the korean society of oceanography
    • /
    • v.32 no.2
    • /
    • pp.63-68
    • /
    • 1997
  • Stable isotope profiles with fine-scale resolution were constructed from the fossil mollusk shells, Mercernaria mercernaria, obtained from the late Pleistocene transgressive deposits of Gomez Pit, Virginia, USA. Incremental sampling were made along the axis of maximum growth to provide high-resolution ${\delta}^{18}$O and ${\delta}^{13}$C records. The ${\delta}^{18}$O shell profiles exhibit a series of pronounced cycles in the overall amplitude, corresponding to strong seasonal variations in temperature, which is apparently positive environmental variable. Contrasts between the patterns of ${\delta}^{18}$O and ${\delta}^{13}$C profiles reflect the relationship influencing the seasonal carbon cycling in the shallow marine environment. Positive anomalies of the ${\delta}^{13}$C values during the summer were observed to be out of phase with the ${\delta}^{18}$O profile. Such relatively heavier carbon source may be alternated due to seasonal methanogenesis during the summer. A hypothesized methane-based system may be operated in the shallow and marginal marine environment, resulting in a ${\delta}^{13}$C enriched bicarbonate pool, in which the heavier isotope seems to be incorporated to the shell carbonate.

  • PDF

Charge-discharge Behaviour of Lithium Ion Secondary Battery Using LiCo$O_2$ Synthesized by a Solution Phase Reaction (액상 반응에 의해 합성한 리튬코발트산화물을 이용한 Lithium ion 2차전지의 충방전 특성)

  • 김상필;조정수;박정후;윤문수;심윤보
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1049-1054
    • /
    • 1998
  • The LiCo$O_2$ powder was synthesized by a solution phase reaction. This shows a high (003) peak intensity and low (104) or (101) peak intensities in X-ray diffraction spectra. The LiCo$O_2$/Li cell shows an initial discharge capacity of 102.9mAh/g and an average discharge potential or 3.877V at a current density of 50mA/g between 3.0~4.2V. The peaks of dQ/dV plot are associated with Li ion intercalation/deintercalation reaction. To evaluate the cycleability of an actual battery system, cylindrical lithium ion cell was manufactured using graphitized MPCF anode and LiCoO$_2$ cathode. After 100th cycle, this cel maintains 80% capacity of 10th cycle value. The LiCoO$_2$/MPCF cell has a high discharge voltage of 3.6~3.7V and a good cycle life performance on cycling between 4.2~2.7V.

  • PDF

A Research on the Actual Wearing Condition of Cycle Wear for Athletes - Focusing on Male Cyclist in Domestic Highschool - (선수용 사이클 웨어의 착용 실태 조사 - 국내 남자 고등학교 사이클 선수를 중심으로 -)

  • Park, Hyunjeong;Do, Wolhee
    • Fashion & Textile Research Journal
    • /
    • v.17 no.4
    • /
    • pp.597-603
    • /
    • 2015
  • This study investigates the actual domestic and overseas cyclewear wearing conditions for male high school cyclists. The study results provide factors and degree of dissatisfaction as basic data for cyclewear development. This study was conducted on 35 male high school cyclists (freshman to seniors) by a questionnaire and interview method. Study results were: Male high school cyclists considered functionality as most important when they bought cyclewear and the brand they most often bought was a cheap domestic brand. Dissatisfaction with the crotch, thigh circumference and minimum leg circumference was higher than other parts during wearing. A cyclist is more sensitive to wear because they require more lower body motion than other parts. Cyclewear should be: less transformed even by frequent laundering, made of breathable material and use a sewing technique that minimizes air resistance and increases fit the body. Functional pads ergonomically designed with high tactile materials should be developed to prevent 'saddle sore' and groin soreness region that happens because of a lower body bending posture when cycling. A follow-up study is recommended to further develop excellence in cyclewear functionality and dimension suitability for male high school cyclists through the size system.

Species Diversity of Arbuscular Mycorrhizal Fungi Community Depending on Environmental Conditions of Forest Soils (산림(山林)의 토양환경(土壤環境) 조건(條件)에 따른 수지상(樹枝狀) 균근(菌根)(AM)균(菌) 집단(集團)의 종(種) 다양성(多樣性))

  • Koo, Chang-Duck
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.1
    • /
    • pp.70-79
    • /
    • 2000
  • Arbuscular mycorrhizal(AM) fungi have significant role for ecosystem structure and function. They are the major component of forest soil ecosystems and critically important for water and nutrient cycling in the system. To understand the ecology of AM fungi the fungal spores were collected, identified and counted in forest soils under various climatic and edaphic conditions. In relation to soil depth 90% of AM fungi spores and mycorrhizas distributed within 15cm soil depth. Number of spores per $100m{\ell}$ forest soil volume was 5 to 36 spores from 1 to 3 fungal species. AM fungal species diversity was higher in warmer climates, and more moist and fertile soils. The most frequently found species were Gigaspora decipiens irrespective of soil moisture and Gi. gigantea irrespective of soil fertility. In the Jeju island the soils of Cryptomeria japonica plantations and Miscanthus sinensis var. purpurascens meadow had more AM spores than the other soils. We suggest AM fungi be considered as keystones species when restoring a disturbed forest ecosystem.

  • PDF

Chemical Imprints of the Upwelled Waters off the Coast of the Southern East Sea of Korea

  • Lee, Tong-Sup;Kim, Il-Nam
    • Journal of the korean society of oceanography
    • /
    • v.38 no.3
    • /
    • pp.101-110
    • /
    • 2003
  • We made intensive observations on the coastal upwelling off the coast of the southern East Sea from June to August in 2001. The upwelling exhibited a weekly waxing and waning. The coastal upwelling of the year 2001 was characterized by abrupt outbreaks and the small local scale. Upwelling occurred more frequently off the coast of Ulsan and Gampo as reported by the earlier observers. The spread of freshly upwelled colder water was varied by each upwelling event. Generally cold waters were carried away northeastward off Pohang province. The upwelled cold waters were saltier than the resident surface waters. The pH and salinity-normalized alkalinity support the idea that the upwelled waters originate from the interior of the East Sea. The extraordinarily high concentration of dissolved oxygen suggests that the upwelled waters are closely connected to the southward flowing North Korea Cold Current. Although a lower primary productivity was reported for the upwelling region, underway surface fluorescence measurement revealed that the recently upwelled waters supported up to an order of magnitude higher algal biomass than the ambient waters. Because thermohaline circulation of the East Sea is so vigorous, with an estimated time scale of less than one hundred years, that the coastal upwelling should be considered not as an anomaly but as a regular component of a circulatory system. A quantitative understanding of upwelling seems to be a key to elucidate material cycling and the associated biological production in the East Sea.

Flexible and Transparent Plastic Electrodes Composed of Reduced Graphene Oxide/Polyaniline Films for Supercapacitor Application

  • Sarker, Ashis K.;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1799-1805
    • /
    • 2014
  • In this article, we described about the preparation and electrochemical properties of a flexible energy storage system based on a plastic polyethylene terephthalate (PET) substrate. The PET treated with UV/ozone was fabricated with multilayer films composed of 30 polyaniline (PANi)/graphene oxide (GO) bilayers using layer-by-layer assembly of positively charged PANi and negatively charged GO. The conversion of GO to the reduced graphene oxide (RGO) in the multilayer film was achieved using hydroiodic acid vapor at $100^{\circ}C$, whereby PANi structure remained nearly unchanged except a little reduction of doping state. Cyclic voltammetry and charge/discharge curves of 30 PANi/RGO bilayers on PET substrate (shorten to PANi-$RGO_{30}$/PET) exhibited an excellent volumetric capacitance, good cycling stability, and rapid charge/discharge rates despite no use of any metal current collectors. The specific capacitance from charge/discharge curve of the PANi-$RGO_{30}$/PET electrode was found to be $529F/cm^3$ at a current density of $3A/cm^3$, which is one of the best values yet achieved among carbon-based materials including conducting polymers. Furthermore, the intrinsic electrical resistance of the PANi-$RGO_{30}$/PET electrodes varied within 20% range during 200 bending cycles at a fixed bend radius of 2.2 mm, indicating the increase in their flexibility by a factor of 225 compared with the ITO/PET electrode.

Suggestion of Long-term Life Time Test for PV Module in Highly Stressed Conditions (가혹조건에서의 태양전지모듈 내구성 평가를 통한 최적의 시험조건 제안)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.63-68
    • /
    • 2010
  • To guarantee life time more than 20 years for manufacturer without stopping photovoltaic(PV) system, it is really important to test the module in realistic time and condition compared to outside weather. In here, we tested PV modules in highly stressed condition compared to IEC standards. In IEC 61215 and IEC 61646 standards, damp-heat, thermal cycle(TC200) and mechanical test are main test items for evaluating long-term durability of PV module in controlled temperature and humidity condition. So in this paper, we have lengthened the test time for TC200 and damp-heat test and increased the loading stress on surface of module. Through this test, we can get some clue of proper the method for measuring realistic life cycle of PV modules and suggested the minimum time for PV test method. The detail description is specified as the following paper.

The study of simplified technique compared with analytical solution method for calculating the energy consumption loads of four houses having various wall construction

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.1
    • /
    • pp.46-58
    • /
    • 2011
  • A steady-state analysis and a simple dynamic model as simplified methods are developed, and results of energy consumption loads are compared with results obtained using computer to evaluate the analytical solution. Before obtaining simplified model a mathematical model is formulated for the effect of wall mass on the thermal performance of four different houses having various wall construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. The steady state analysis that does not include the effect of thermal mass can provide an accurate estimate of energy consumption in most cases except for houses #2 and #4 in mild weather areas. This result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions. The simple dynamic model is applicable for high cycling rates and accurate values of inside wall temperature and ambient air temperature.