• Title/Summary/Keyword: cyclin D3

Search Result 212, Processing Time 0.026 seconds

Effect of Ailanthi Cortex on the Apoptosis and Cell Cycle of HL-60 Leukemia Cell Line (HL-60 백혈병 세포의 세포고사에 미치는 저근백피의 효과)

  • Jeong Young Mok;Park Sin Ki;Lee Jun;Kim Young Mok;Yun Yong Gab;Kim Won Sin;Han Dong Min;An Won Gun;Yoon Yoo Sik;Jeon Byung Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.914-922
    • /
    • 2003
  • Ailanthus altissima has been used to settle an upset stomach, to alleviate a fever, and as an insecticide. We reported that the water extract of A. altissima induced apoptotic cell death in HL-60 human leukemia cell line. Here, we showed the dose-dependent inhibitions of cell viability by the extract, as measured by cell morphology. The cell cycle control genes are considered to play important roles in tumorigenesis. The purpose of the present study is also to investigate the effect of A. altissima on cell cycle progression and its molecular mechanism in the cells. The level of p21 protein was increased after treatment of the extract, whereas both Bcl-2 and Bax protein levels were not changed. These results suggest that A. altissima induces apoptotic cell death via p21-dependent signaling pathway in HL-60 human leukemia cell line which delete wild type p53. G1 checkpoin related gene products tested (cyclin D3, cyclin dependent kinase 4, retinoblastoma, E2F1) were decreased in their protein levels in a dose-dependent manner after treatment of the extract. Taken together, these results indicate that the increase of apoptotic cell death by A. altissima may be due to the inhibition of cell cycle in HL-60 human leukemia cell line

The Integrins Involved in Soybean Agglutinin-Induced Cell Cycle Alterations in IPEC-J2

  • Pan, Li;Zhao, Yuan;Yuan, Zhijie;Farouk, Mohammed Hamdy;Zhang, Shiyao;Bao, Nan;Qin, Guixin
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • Soybean agglutinin (SBA) is an anti-nutritional factor of soybean, affecting cell proliferation and inducing cytotoxicity. Integrins are transmembrane receptors, mediating a variety of cell biological processes. This research aims to study the effects of SBA on cell proliferation and cell cycle progression of the intestinal epithelial cell line from piglets (IPEC-J2), to identify the integrin subunits especially expressed in IPEC-J2s, and to analyze the functions of these integrins on IPEC-J2 cell cycle progression and SBA-induced IPEC-J2 cell cycle alteration. The results showed that SBA lowered cell proliferation rate as the cell cycle progression from G0/G1 to S phase (P < 0.05) was inhibited. Moreover, SBA lowered mRNA expression of cell cycle-related gene CDK4, Cyclin E and Cyclin D1 (P < 0.05). We successfully identified integrins ${\alpha}2$, ${\alpha}3$, ${\alpha}6$, ${\beta}1$, and ${\beta}4$ in IPEC-J2s. These five subunits were crucial to maintain normal cell proliferation and cell cycle progression in IPEC-J2s. Restrain of either these five subunits by their inhibitors, lowered cell proliferation rate, and arrested the cells at G0/G1 phase of cell cycle (P < 0.05). Further analysis indicated that integrin ${\alpha}2$, ${\alpha}6$, and ${\beta}1$ were involved in the blocking of G0/G1 phase induced by SBA. In conclusion, these results suggested that SBA lowered the IPEC-J2 cell proliferation rate through the perturbation of cell cycle progression. Furthermore, integrins were important for IPEC-J2 cell cycle progression, and they were involved in the process of SBA-induced cell cycle progression alteration, which provide a basis for further revealing SBA anti-proliferation and anti-nutritional mechanism.

Inhibitory Effect of Snake Venom on Colon Cancer Cell Growth Through Induction of Death Receptor Dependent Apoptosis (사독(蛇毒)이 세포자멸사와 관계있는 Death Receptor를 통한 인간 대장암 세포 성장억제에 미치는 영향)

  • Oh, Myung-Jin;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.29 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • 목적 : 이 연구는 $Vipera$ $lebetina$ $turanica$ 사독(蛇毒)이 인간 대장암 세포주인 HCT116 세포에서 세포주기진행, death receptor 의존적 세포자멸사 경로 관련단백질 발현 및 NK-${\kappa}B$와 STAT3 활성에 미치는 영향을 규명함으로써 대장암 세포 성장에 대한 억제와 그 기전에 대하여 살펴보고자 하였다. 방법 : 사독을 처리한 후 HCT116의 세포주기를 분석하기 위해서 FACS analysis를 시행하였고, apoptosis 평가에는 TUNEL assay를 시행하였으며 death receptor 의존적 세포자멸사 경로 관련단백질 및 NF-${\kappa}B$와 STAT3 활성 변동 관찰에는 RT-PCR 및 western blot analysis를 시행하였다. 결과 : 1. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 농도 의존적으로 HCT116 대장암 세포활성의 억제가 나타났다. 2. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 농도의존적으로 세포자멸사 활성세포의 증가가 나타났고, SVT $1{\mu}g/m{\ell}$에서는 60-70%의 대장암세포 억제 효과가 나타났다. 3. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 약한 G1 arrest와 강한 G2/M arrest가 나타났고, G0/G1 또는 G2/M 관련 cyclin D, E 및 B1의 증가가 나타났다. 4. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 death receptor4, 5의 발현증가와 그에 따른 세포자멸사 촉진 Bax, PARP, caspase-3, -8, -9 발현 증가 및 세포자멸사 억제의 Bcl-2의 발현 감소 등이 나타났다. 6. 0.1, 0.5 및 $1{\mu}g/m{\ell}$ 등의 사독을 처리한 결과 NF-${\kappa}B$와 STAT3의 활성변동은 관찰되지 않았다. 결론 : 이상의 연구에서 사독은 death receptor 의존적인 세포자멸사를 촉진하여 대장암의 화학치료 내성을 극복할 수 있는 하나의 대안이 될 것으로 생각되지만 보다 심화된 연구가 필요할 것으로 사료된다.

Change of Ratio of Onchungeum Composition Induces Different G1 Arrest Mechanisms in Hep3B Cells (온청음(溫淸飮)의 조성 용량변화가 Hep3B 세포의 G1 arrest 기전에 미치는 영향)

  • Goo, In-Moo;Kim, Gil-When;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1250-1255
    • /
    • 2008
  • Onchungeum(OCE), a herbal formula, has been used for treatment of anemia, discharging blood and skin diseases. In the previous study, we investigated the anti-cancer effect of OCE by G1 arrest of the cell cycle in human hepatocarcinoma cells, Hep3B cells. In this study, it was examined that the difference of anti-proliferative mechanisms by change in the ratio of OCE composition (OCE I) in Hep3B cells. Treatment of OCE I exhibited a relatively strong anti-proliferative activity and caused various morphological changes such as membrane shrinkage and cell floating. In addition, OCE-I arrests the cell cycle at G1 phase, which was associated with the down-regulation of cyclin D1 and Cdk6 expressions. The G1 arrest was also associated with the induction of Cdk inhibitors p27 and p21. Moreover, both p21 and p27 were detected by immunoprecipitation with anti-Cdk4 and anti-Cdk2 antibodies in OCE I-treated cells but in case of OCE, p21 did not make any complexes with Cdk4 and Cdk2. These results suggest that the change in the ratio of OCE composition might induce different mechanisms in anti-cancer efficacy of OCE, which may confer characteristic principles in oriental medical formula.

Discovery of Cyclin-dependent Kinase Inhibitor, CR229, Using Structure-based Drug Screening

  • Kim, Min-Kyoung;Min, Jae-Ki;Choi, Bu-Young;Lim, Hae-Young;Cho, Youl-Hee;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1712-1716
    • /
    • 2007
  • To generate new scaffold candidates as highly selective and potent cyelin-dependent kinase (CDK) inhibitors, structure-based drug screening was performed utilizing 3D pharmacophore conformations of known potent inhibitors. As a result, CR229 (6-bromo-2,3,4,9-tetrahydro-carbolin-1-one) was generated as the hit-compound. A computational docking study using the X-ray crystallographic structure of CDK2 in complex with CR229 was evaluated. This predicted binding mode study of CR229 with CDK2 demonstrated that CR229 interacted effectively with the Leu83 and Glu81 residues in the ATP-binding pocket of CDK2 for the possible hydrogen bond formation. Furthermore, biochemical studies on inhibitory effects of CR229 on various kinases in the human cervical cancer HeLa cells demonstrated that CR229 was a potent inhibitor of CDK2 ($IC_{50}:\;3\;{\mu}M$), CDKI ($IC_{50}:\;4.9\;{\mu}M$), and CDK4 ($IC_{50}:\;3\;{\mu}M$), yet had much less inhibitory effect ($IC_{50}:>20\;{\mu}M$) on other kinases, such as casein kinase 2-${\alpha}1$ (CK2-${\alpha}1$), protein kinase A (PKA), and protein kinase C (PKC). Accordingly, these data demonstrate that CR229 is a potent CDK inhibitor with anticancer efficacy.

Hesperidin Induces Apoptosis by Inhibiting Sp1 and Its Regulatory Protein in MSTO-211H Cells

  • Lee, Kyung-Ae;Lee, Sang-Han;Lee, Yong-Jin;Baeg, Seung-Mi;Shim, Jung-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • Hesperidin, a flavanone present in citrus fruits, has been studied as potential therapeutic agents that have anti-tumor activity and apoptotic effects in several cancers, but there is no report about the apoptotic effect of hesperidin in human malignant pleural mesothelioma through the specificity protein 1 (Sp1) protein. We investigated whether hesperidin inhibited cell growth and regulated Sp1 target proteins by suppressing the levels of Sp1 protein in MSTO-211H cells. The $IC_{50}$ value of hesperidin was determined to be 152.3 ${\mu}M$ in MSTO-211H cells for 48 h. Our results suggested that hesperidin (0-160 ${\mu}M$) decreased cell viability, and induced apoptotic cell death. Hesperidin increased Sub-$G_1$ population in MSTO-211H cells. Hesperidin significantly suppressed mRNA/protein level of Sp1 and modulated the expression level of the Sp1 regulatory protein such as p27, p21, cyclin D1, Mcl-1, and survivin in mesothelioma cells. Also, hesperidin induced apoptotic signaling including: cleavages of Bid, caspase-3, and PARP, upregulation of Bax, and down-regulation of Bcl-$_{xl}$ in mesothelioma cells. These results show that hesperidin suppressed mesothelioma cell growth through inhibition of Sp1. In this study, we demonstrated that Sp1 acts as a novel molecular target of hesperidin in human malignant pleural mesothelioma.

Induction of Apoptotic Cell Death in Human Jurkat T Cells by a Chlorophyll Derivative (Cp-D) Isolated from Actinidia arguta Planchon

  • Park, Youn-Hee;Chun, En-Mi;Bae, Myung-Ae;Seu, Young-Bae;Song, Kyung-Sik;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.27-34
    • /
    • 2000
  • The chloroform and methanol (2;1, v/v) extract from an edible plant, Actinidia arguta Planchon, appeared to possess antitumor activity against human leukemias Jurkat T and U937 cells through inducing apoptosis. The substance in the solvent extract was purified by silica gel column chromatography, preparative TLC, and Sephadex LH-20 column chromatography. Characteristics of the substance analyzed by UV scanning analysis, $^1H$ and $^{13}C$ NMR spectra suggested that the substance belongs to the chlorophyll derivatives-like group. The $IC_{50}$ value of the chlorophyll derivative (Cp-D) determined by MTT assay was $15\mu\textrm{g}/ml$ for Jurkat, $10\mu\textrm{g}/ml$ for U937, and $11.4\mu\textrm{g}/ml$ for HL-60m and was more toxic to these leukemias than to solid tumors or normal fibroblast. In order to elucidate cellular mechanisms underlying the cytotoxicity, the effect of the Cp-D on Jurkat T cells was investigated. When cells were treated with the Cp-D at a concentration of $15\mu\textrm{g}/ml$, [3H]thymidine incorporation declined rapidly and wa undetectable in 1h. However, no significant changes were made in the cell cycle distribution of the cells by 24h. The sub-Gl peak representing apoptotic cells began to be detectable in 36h, at which time apoptotic DNA fragmentation was also detected on agarose gel electrophoresis, demonstrating that the cytotoxic effect of the Cp-D is attributable to the induced apoptosis. Under the same conditions, although the protein level of cyclin-dependent kinases such as cdc4, csk6, cdk2, and cdc2 was not significantly changed until 24h, the kinase activity of all c안 rapidly declined and reached a minimum level within 1-6h and then recovered to the initial level by 12h and sustained until 24h. These results suggest that inactivation of cdks at an inappropriate time during the cell cycle progression in jurkat T cells following a treatment with the Cp-D leads to induction of apoptotic cell death.

  • PDF

Effect of Trichostatin A on Anti HepG2 Liver Carcinoma Cells: Inhibition of HDAC Activity and Activation of Wnt/β-Catenin Signaling

  • Shi, Qing-Qiang;Zuo, Guo-Wei;Feng, Zi-Qiang;Zhao, Lv-Cui;Luo, Lian;You, Zhi-Mei;Li, Dang-Yang;Xia, Jing;Li, Jing;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7849-7855
    • /
    • 2014
  • Purpose: To investigate the effect of deacetylase inhibitory trichostatin A (TSA) on anti HepG2 liver carcinoma cells and explore the underlying mechanisms. Materials and Methods: HepG2 cells exposed to different concentrations of TSA for 24, 48, or 72h were examined for cell growth inhibition using CCK8, changes in cell cycle distribution with flow cytometry, cell apoptosis with annexin V-FTIC/PI double staining, and cell morphology changes under an inverted microscope. Expression of ${\beta}$-catenin, HDAC1, HDAC3, H3K9, CyclinD1 and Bax proteins was tested by Western blotting. Gene expression for ${\beta}$-catenin, HDAC1and HDAC3 was tested by q-PCR. ${\beta}$-catenin and H3K9 proteins were also tested by immunofluorescence. Activity of Renilla luciferase (pTCF/LEF-luc) was assessed using the Luciferase Reporter Assay system reagent. The activity of total HDACs was detected with a HDACs colorimetric kit. Results: Exposure to TSA caused significant dose-and time-dependent inhibition of HepG2 cell proliferation (p<0.05) and resulted in increased cell percentages in G0/G1 and G2/M phases and decrease in the S phase. The apoptotic index in the control group was $6.22{\pm}0.25%$, which increased to $7.17{\pm}0.20%$ and $18.1{\pm}0.42%$ in the treatment group. Exposure to 250 and 500nmol/L TSA also caused cell morphology changes with numerous floating cells. Expression of ${\beta}$-catenin, H3K9and Bax proteins was significantly increased, expression levels of CyclinD1, HDAC1, HDAC3 were decreased. Expression of ${\beta}$-catenin at the genetic level was significantly increased, with no significant difference in HDAC1and HDAC3 genes. In the cytoplasm, expression of ${\beta}$-catenin fluorescence protein was not obvious changed and in the nucleus, small amounts of green fluorescence were observed. H3K9 fluorescence protein were increased. Expression levels of the transcription factor TCF werealso increased in HepG2 cells following induction by TSA, whikle the activity of total HDACs was decreased. Conclusions: TSA inhibits HDAC activity, promotes histone acetylation, and activates Wnt/${\beta}$-catenin signaling to inhibit proliferation of HepG2 cell, arrest cell cycling and induce apoptosis.

Herb medicine Bo-du-san induces caspase dependent apoptosis and cell cycle arrest human gastric cancer cells, SNU-1 (보두산(寶豆散)에 의한 SNU-1 세포의 Apoptosis 유도와 Cell cycle arrest)

  • Yun, Hyun-Joung;Seo, Gyo-Soo;Choi, Jae-Woo;Lee, Hyun-Woo;Heo, Sook-Kyoung;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.35-43
    • /
    • 2007
  • Objectives : The purpose of this study was to investigate the effect of Bo-du-san (BOS) on apoptosis in human gastric cancer cells, SNU-l cells. BOS, a drug preparation consisting of two herbs, that is, Crotonis Fructus (Strychni ignatii Semen, bodu in Korean) and Glycyrrhizae Radix (Glycyrrhizae uralensis FISCH, Gamcho in Korean). Methodss : In this study, methanol extract of BOS was examined for cytotoxic activity on human gastric cancer cells, SNU-1 cells, using XTT assay, with an IC50 value was 0.7 mg/ml and 0.3 mg/ml at 24 hrs and 48 hrs, respectively. Apoptosis induction by BDS in SNU-l cells was verified by the induction of DNA fragmentation, cleavage of poly ADP-ribose polymerase (PARP), and activation of caspase-3, -8 and -9. Inhibitors of caspase-3, -8 and -9 (Ac-DEVD-CHO, Z-IETD-FMK and Z-LEHD-FMK) efficiently blocked BOS-induced cell death of SNU-l. Resultss : BOS-induced cell death was via caspase dependent apoptosis. Moreover, treatment of BOS result in the decrease the G1/S cycle regulation proteins (cyclin D1 and E) expression and increase CDK inhibitor proteins (p21 and p27) expression, and increase apoptotic protein, p53 expression. Thus, BOS induces apoptosis in SNU-1 cells via cell cycle arrested in G1 phase. Conclusions : These results indicated that BOS has some potential for use as an anti-cancer agent.

  • PDF

Mechanism of Chemoprevention against Colon Cancer Cells Using Combined Gelam Honey and Ginger Extract via mTOR and Wnt/β-catenin Pathways

  • Wee, Lee Heng;Morad, Noor Azian;Aan, Goon Jo;Makpol, Suzana;Ngah, Wan Zurinah Wan;Yusof, Yasmin Anum Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6549-6556
    • /
    • 2015
  • The PI3K-Akt-mTOR, $Wnt/{\beta}$-catenin and apoptosis signaling pathways have been shown to be involved in genesis of colorectal cancer (CRC). The aim of this study was to elucidate whether combination of Gelam honey and ginger might have chemopreventive properties in HT29 colon cancer cells by modulating the mTOR, $Wnt/{\beta}$-catenin and apoptosis signaling pathways. Treatment with Gelam honey and ginger reduced the viability of the HT29 cells dose dependently with $IC_{50}$ values of 88 mg/ml and 2.15 mg/ml respectively, their while the combined treatment of 2 mg/ml of ginger with 31 mg/ml of Gelam honey inhibited growth of most HT29 cells. Gelam honey, ginger and combination induced apoptosis in a dose dependent manner with the combined treatment exhibiting the highest apoptosis rate. The combined treatment downregulated the gene expressions of Akt, mTOR, Raptor, Rictor, ${\beta}$-catenin, $Gsk3{\beta}$, Tcf4 and cyclin D1 while cytochrome C and caspase 3 genes were shown to be upregulated. In conclusion, the combination of Gelam honey and ginger may serve as a potential therapy in the treatment of colorectal cancer through inhibiton of mTOR, $Wnt/{\beta}$ catenin signaling pathways and induction of apoptosis pathway.