• Title/Summary/Keyword: cyclin D1

Search Result 334, Processing Time 0.028 seconds

Extracellular acidity enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis via DR5 in gastric cancer cells

  • Hong, Ran;Han, Song Iy
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.513-523
    • /
    • 2018
  • The tumor microenvironment greatly influences cancer cell characteristics, and acidic extracellular pH has been implicated as an essential factor in tumor malignancy and the induction of drug resistance. Here, we examined the characteristics of gastric carcinoma (GC) cells under conditions of extracellular acidity and attempted to identify a means of enhancing treatment efficacy. Acidic conditions caused several changes in GC cells adversely affecting chemotherapeutic treatment. Extracellular acidity did inhibit GC cell growth by inducing cell cycle arrest, but did not induce cell death at pH values down to 6.2, which was consistent with down-regulated cyclin D1 and up-regulated p21 mRNA expression. Additionally, an acidic environment altered the expression of atg5, HSPA1B, collagen XIII, collagen XXAI, slug, snail, and zeb1 genes which are related to regulation of cell resistance to cytotoxicity and malignancy, and as expected, resulted in increased resistance of cells to multiple chemotherapeutic drugs including etoposide, doxorubicin, daunorubicin, cisplatin, oxaliplatin and 5-FU. Interestingly, however, acidic environment dramatically sensitized GC cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Consistently, the acidity at pH 6.5 increased mRNA levels of DR4 and DR5 genes, and also elevated protein expression of both death receptors as detected by immunoblotting. Gene silencing analysis showed that of these two receptors, the major role in this effect was played by DR5. Therefore, these results suggest that extracellular acidity can sensitize TRAIL-mediated apoptosis at least partially via DR5 in GCs while it confers resistance to various type of chemotherapeutic drugs.

Effects of Schisandrae Fructus 70% Ethanol Extract on Proliferation and Differentiation of Human Embryonic Neural Stem Cells (오미자 70% 에탄올 추출물의 신경줄기세포 증식과 분화에 미치는 영향)

  • Baral, Samrat;Pariyar, Ramesh;Yoon, Chi-Su;Yun, Jong-Min;Jang, Seok O;Kim, Sung Yeon;Oh, Hyuncheol;Kim, Youn-Chul;Seo, Jungwon
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.1
    • /
    • pp.52-58
    • /
    • 2015
  • Neural stem cells (NSCs), with self-renewal and neuronal differentiation capacity, are a feasible resource in cell-based therapies for various neurodegenerative diseases and neural tissue injuries. In this study, we investigated the effects of Schisandrae Fructus (SF) on proliferation and differentiation of human embryonic NSCs. Treatment with 70% ethanol extract of SF increased the viability of NSCs derived from human embryonic stem cells, which was accompanied by increased mRNA expression of cyclin D1. Whereas 70% ethanol extract of SF also decreased the mRNA expression of nestin, it increased class III ${\beta}$-tublin (Tuj-1) and MAP2 in both growth and differentiation media. Lastly, we found increased mRNA expression of BDNF in SF-treated NSCs. In conclusion, our study demonstrates for the first time that SF induced proliferation and neuronal differentiation of NSCs and increased mRNA expression of BDNF, suggesting its potential as a regulator of NSC fate in NSC-based therapy for neuronal injuries from various diseases.

Salvia miltiorrhiza Inhibits Tumor Cell Growth in Association with Rb Dephosphorylation through Up-regulation of p21 Via a p53-dependent Pathway

  • Chung, Jin;Chang, Jae-Eun;Son, Yong-Hae;Park, Hae-Ruyn;Lim, Suk Hwan;Oh, Yang-Hyo;Lee, Moo-Yeol;Park, Yeong-Min
    • IMMUNE NETWORK
    • /
    • v.2 no.1
    • /
    • pp.19-24
    • /
    • 2002
  • Background: Salvia miltiorrhiza (SM), a traditional oriental medicine, has been reported to have anti-tumor properties, but its exact mechanism remains to be elucidated. In this study, we investigated several of the molecular events that occur in human breast carcinoma MCF-7 cells and human pulmonary adenocarcinoma A549 cells. Methods: For this purpose, we evaluated the growth-inhibitory effect of SM in association with the expressions of p53, p21, cyclin D1, and pRb, which are known to be involved in cell cycle arrest. The extent of thymidine incorporation was also examined to assess G1/S phase cell cycle arrest in both cells by $^3H$-thymidine incorporation. Results: Our results show that SM inhibits the growth and the proliferation of MCF-7 and A549 cells. Furthermore, we also observed increased expression of p21 via a p53-dependent pathway in both cell lines after treating with SM. In addition, treatment with SM for 24 hours caused the suppression of hyperphosphorylated retinoblastoma protein (pRb) expression and the dephosphorylation of pRb. Conclusion: These findings suggest that the growth inhibitory and the anti-proliferation effects of SM on MCF-7 cells and A549 cells are mediated via the decreased expression and dephosphorylation of pRB by p21 up-regulation in a p53-dependent manner. To the best of our knowledge, this study is the first to report upon the molecular mechanisms involved in SM-induced tumor cell growth inhibition.

Silence of LncRNA GAS5 Protects Cardiomyocytes H9c2 against Hypoxic Injury via Sponging miR-142-5p

  • Du, Jian;Yang, Si-Tong;Liu, Jia;Zhang, Ke-Xin;Leng, Ji-Yan
    • Molecules and Cells
    • /
    • v.42 no.5
    • /
    • pp.397-405
    • /
    • 2019
  • The regulatory role of long noncoding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) in both cancerous and noncancerous cells have been widely reported. This study aimed to evaluate the role of lncRNA GAS5 in heart failure caused by myocardial infarction. We reported that silence of lncRNA GAS5 attenuated hypoxia-triggered cell death, as cell viability was increased and apoptosis rate was decreased. This phenomenon was coupled with the down-regulated expression of p53, Bax and cleaved caspase-3, as well as the up-regulated expression of CyclinD1, CDK4 and Bcl-2. At the meantime, the expression of four heart failure-related miR-NAs was altered when lncRNA GAS5 was silenced (miR-21 and miR-142-5p were up-regulated; miR-30b and miR-93 were down-regulated). RNA immunoprecipitation assay results showed that lncRNA GAS5 worked as a molecular sponge for miR-142-5p. More interestingly, the protective actions of lncRNA GAS5 silence on hypoxia-stimulated cells were attenuated by miR-142-5p suppression. Besides, TP53INP1 was a target gene for miR-142-5p. Silence of lncRNA GAS5 promoted the activation of PI3K/AKT and MEK/ERK signaling pathways in a miR-142-5p-dependent manner. Collectively, this study demonstrated that silence of lncRNA GAS5 protected H9c2 cells against hypoxia-induced injury possibly via sponging miR-142-5p, functionally releasing TP53INP1 mRNA transcripts that are normally targeted by miR-142-5p.

Ahnak depletion accelerates liver regeneration by modulating the TGF-β/Smad signaling pathway

  • Yang, Insook;Son, Yeri;Shin, Jae Hoon;Kim, Il Yong;Seong, Je Kyung
    • BMB Reports
    • /
    • v.55 no.8
    • /
    • pp.401-406
    • /
    • 2022
  • Ahnak, a large protein first identified as an inhibitor of TGF-β signaling in human neuroblastoma, was recently shown to promote TGF-β in some cancers. The TGF-β signaling pathway regulates cell growth, various biological functions, and cancer growth and metastasis. In this study, we used Ahnak knockout (KO) mice that underwent a 70% partial hepatectomy (PH) to investigate the function of Ahnak in TGF-β signaling during liver regeneration. At the indicated time points after PH, we analyzed the mRNA and protein expression of the TGF -β/Smad signaling pathway and cell cycle-related factors, evaluated the cell cycle through proliferating cell nuclear antigen (PCNA) immunostaining, analyzed the mitotic index by hematoxylin and eosin staining. We also measured the ratio of liver tissue weight to body weight. Activation of TGF-β signaling was confirmed by analyzing the levels of phospho-Smad 2 and 3 in the liver at the indicated time points after PH and was lower in Ahnak KO mice than in WT mice. The expression levels of cyclin B1, D1, and E1; proteins in the Rb/E2F transcriptional pathway, which regulates the cell cycle; and the numbers of PCNA-positive cells were increased in Ahnak KO mice and showed tendencies opposite that of TGF-β expression. During postoperative regeneration, the liver weight to body weight ratio tended to increase faster in Ahnak KO mice. However, 7 days after PH, both groups of mice showed similar rates of regeneration, following which their active regeneration stopped. Analysis of hepatocytes undergoing mitosis showed that there were more mitotic cells in Ahnak KO mice, consistent with the weight ratio. Our findings suggest that Ahnak enhances TGF-β signaling during postoperative liver regeneration, resulting in cell cycle disruption; this highlights a novel role of Ahnak in liver regeneration. These results provide new insight into liver regeneration and potential treatment targets for liver diseases that require surgical treatment.

Mettl14 mutation restrains liver regeneration by attenuating mitogens derived from non-parenchymal liver cells

  • Insook, Yang;Seung Yeon, Oh;Suin, Jang;Il Yong, Kim;You Me, Sung;Je Kyung, Seong
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.633-638
    • /
    • 2022
  • Liver regeneration is a well-known systemic homeostatic phenomenon. The N6-methyladenosine (m6A) modification pathway has been associated with liver regeneration and hepatocellular carcinoma. m6A methyltransferases, such as methyltransferase 3 (METTL3) and methyltransferase 14 (METTL14), are involved in the hepatocyte-specific-regenerative pathway. To illustrate the role of METTL14, secreted from non-parenchymal liver cells, in the initiation phase of liver regeneration, we performed 70% partial hepatectomy (PH) in Mettl14 heterozygous (HET) and wild-type (WT) mice. Next, we analyzed the ratio of liver weight to body weight and the expression of mitogenic stimulators derived from non-parenchymal liver cells. Furthermore, we evaluated the expression of cell cycle-related genes and the hepatocyte proliferation rate via MKI67-immunostaining. During regeneration after PH, the weight ratio was lower in Mettl14 HET mice compared to WT mice. The expressions of hepatocyte growth factor (HGF) and tumor necrosis factor (TNF)-α, mitogens derived from non-parenchymal liver cells that stimulate the cell cycle, as well as the expressions of cyclin B1 and D1, which regulate the cell cycle, and the number of MKI67-positive cells, which indicate proliferative hepatocyte in the late G1-M phase, were significantly reduced in Mettl14 HET mice 72 h after PH. Our findings demonstrate that global Mettl14 mutation may interrupt the homeostasis of liver regeneration after an acute injury like PH by restraining certain mitogens, such as HGF and TNF-α, derived from sinusoidal endothelial cells, stellate cells, and Kupffer cells. These results provide new insights into the role of METTL14 in the clinical treatment strategies of liver disease.

Anti-proliferation, Cell Cycle Arrest, and Apoptosis Induced by Natural Liquiritigenin from Licorice Root in Oral Squamous Cell Carcinoma Cells (구강편평세포암종 세포에서 감초 유래 Liquiritigenin의 항증식, 세포주기 정지 및 세포사멸 유도)

  • Kwak, Ah-Won;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.295-302
    • /
    • 2019
  • Liquiritigenin (LG) is a chiral flavonoid isolated from the roots of licorice. It exhibits multiple biological activities including anti-oxidant, anti-cancer, and anti-inflammatory effects. In particular though, the anti-cancer activity of LG in oral squamous cell carcinoma has yet to be elucidated, and LG-induced apoptosis in oral squamous cell carcinoma remains poorly understood. In the present study, we tested the role of LG in inducing apoptosis in oral squamous cell carcinoma cells. LG treatment of HN22 cells resulted in a dose-dependent inhibition of cell viability as detected by a 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. The induction of apoptosis in terms of Annexin V/7-Aminoactinomycin D staining, sub-G1 population, and multi-caspase activity were assessed with a $Muse^{TM}$ Cell Analyzer. Flow cytometric analysis revealed that LG treatment resulted in G2/M arrest in cell cycle progression and downregulation of cyclin B1 and CDC2 expression in a concentration-dependent manner. It also resulted in significant upregulation of p27. In addition, LG was seen to trigger the generation of reactive oxygen species and induce CCAAT/enhancer-binding protein homologous protein and 78-kDa glucose-regulated protein in concentration-dependent upregulation. The LG treatment of HN22 cells led to a loss of mitochondrial membrane potential (${\Delta}{\Psi}m$); it also reduced the levels of anti-apoptotic protein and increased the expression of apoptotic protease activating factor-1, cleaved poly (ADP-ribose)polymerase and Bax. Overall, our results indicate that the pro-apoptotic effects of LG in HN22 cells depend on the activation of both intrinsic and extrinsic signaling pathways. Thus, our results suggest that LG constitutes a natural compound with a potential role as an anti-tumor agent in oral squamous cell carcinoma.

Effect of Clitocybin A on the Proliferation of Dermal Papilla Cells (Clitocybin A의 모유두 세포증식 효능)

  • Kang, Jung-Il;Kim, Min-Kyoung;Yoo, Eun-Sook;Yoo, Ick-Dong;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.288-293
    • /
    • 2014
  • The present study was conducted to evaluate the hair growth-promoting effect of Clitocybin A from mushroom Clitocybe aurantiaca with dermal papilla cells (DPCs), which play important roles in the regulation of hair cycle. Clitocybin A significantly increased the proliferation of immortalized rat vibrissa DPCs. Flow cytometry analysis revealed that Clitocybin A promoted cell-cycle progression through G0/G1 to S phase in immortalized rat vibrissa DPCs. In addition, Clitocybin A increased the level of cell cycle proteins such as cyclin D1, phospho-pRB, and phospho-CDK2. To elucidate the molecular mechanisms of Clitocybin A on the proliferation of DPCs, we examined the activation of wnt/${\beta}$-catenin signaling which is known to regulate hair follicle development, differentiation and hair growth. Clitocybin A activated wnt/${\beta}$-catenin signaling via the increase of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-$GSK3{\beta}$. Furthermore, Clitocybin A markedly increased the activation of extracellular signal-regulated kinase (ERK). These results suggest that the Clitocybin A may induce hair growth by proliferation of DPCs via cell-cycle progression as well as the activation of Wnt/${\beta}$-catenin signaling and ERK pathway.

Cell Cycle Modulation of MCF-7 and MDA-MB-231 by a Sub-Fraction of Strobilanthes crispus and its Combination with Tamoxifen

  • Yaacob, Nik Soriani;Kamal, Nik Nursyazni Nik Mohamed;Wong, Kah Keng;Norazmi, Mohd Nor
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8135-8140
    • /
    • 2016
  • Background: Cell cycle regulatory proteins are suitable targets for cancer therapeutic development since genetic alterations in many cancers also affect the functions of these molecules. Strobilanthes crispus (S. crispus) is traditionally known for its potential benefits in treating various ailments. We recently reported that an active sub-fraction of S. crispus leaves (SCS) caused caspase-dependent apoptosis of human breast cancer MCF-7 and MDA-MB-231 cells. Materials and Methods: Considering the ability of SCS to also promote the activity of the antiestrogen, tamoxifen, we further examined the effect of SCS in modulating cell cycle progression and related proteins in MCF-7 and MDA-MB-231 cells alone and in combination with tamoxifen. Expression of cell cycle-related transcripts was analysed based on a previous microarray dataset. Results: SCS significantly caused G1 arrest of both types of cells, similar to tamoxifen and this was associated with modulation of cyclin D1, p21 and p53. In combination with tamoxifen, the anticancer effects involved downregulation of $ER{\alpha}$ protein in MCF-7 cells but appeared independent of an ER-mediated mechanism in MDA-MB-231 cells. Microarray data analysis confirmed the clinical relevance of the proteins studied. Conclusions: The current data suggest that SCS growth inhibitory effects are similar to that of the antiestrogen, tamoxifen, further supporting the previously demonstrated cytotoxic and apoptotic actions of both agents.

Triptolide Inhibits Histone Methyltransferase EZH2 and Modulates the Expression of Its Target Genes in Prostate Cancer Cells

  • Tamgue, Ousman;Chai, Cheng-Sen;Hao, Lin;Zambe, John-Clotaire Daguia;Huang, Wei-Wei;Zhang, Bin;Lei, Ming;Wei, Yan-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5663-5669
    • /
    • 2013
  • The histone methyltransferase EZH2 (enhancer of zeste homolog 2) plays critical roles in prostate cancer (PCa) development and is a potential target for PCa treatment. Triptolide possesses anti-tumor activity, but it is unknown whether its therapeutic effect relates with EZH2 in PCa. Here we described EZH2 as a target for Triptolide in PCa cells. Our data showed that Triptolide suppressed PCa cell growth and reduced the expression of EZH2. Overexpression of EZH2 attenuated the Triptolide induced cell growth inhibition. Moreover, Triptolide treatment of PC-3 cells resulted in elevated mRNA levels of target genes (ADRB2, CDH1, CDKN2A and DAB2IP) negatively regulated by EZH2 as well as reduced mRNA levelsan of EZH2 positively regulated gene (cyclin D1). Our findings suggest the PCa cell growth inhibition mediated by Triptolide might be associated with downregulation of EZH2 expression and the subsequent modulation of target genes.