• Title/Summary/Keyword: cyclin

Search Result 645, Processing Time 0.048 seconds

Licochalcone C Inhibits the Growth of Human Colorectal Cancer HCT116 Cells Resistant to Oxaliplatin

  • Seung-On Lee;Sang Hoon Joo;Jin-Young Lee;Ah-Won Kwak;Ki-Taek Kim;Seung-Sik Cho;Goo Yoon;Yung Hyun Choi;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.104-114
    • /
    • 2024
  • Licochalcone C (LCC; PubChem CID:9840805), a chalcone compound originating from the root of Glycyrrhiza inflata, has shown anticancer activity against skin cancer, esophageal squamous cell carcinoma, and oral squamous cell carcinoma. However, the therapeutic potential of LCC in treating colorectal cancer (CRC) and its underlying molecular mechanisms remain unclear. Chemotherapy for CRC is challenging because of the development of drug resistance. In this study, we examined the antiproliferative activity of LCC in human colorectal carcinoma HCT116 cells, oxaliplatin (Ox) sensitive and Ox-resistant HCT116 cells (HCT116-OxR). LCC significantly and selectively inhibited the growth of HCT116 and HCT116-OxR cells. An in vitro kinase assay showed that LCC inhibited the kinase activities of EGFR and AKT. Molecular docking simulations using AutoDock Vina indicated that LCC could be in ATP-binding pockets. Decreased phosphorylation of EGFR and AKT was observed in the LCC-treated cells. In addition, LCC induced cell cycle arrest by modulating the expression of cell cycle regulators p21, p27, cyclin B1, and cdc2. LCC treatment induced ROS generation in CRC cells, and the ROS induction was accompanied by the phosphorylation of JNK and p38 kinases. Moreover, LCC dysregulated mitochondrial membrane potential (MMP), and the disruption of MMP resulted in the release of cytochrome c into the cytoplasm and activation of caspases to execute apoptosis. Overall, LCC showed anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, inducing ROS generation and disrupting MMP. Thus, LCC may be potential therapeutic agents for the treatment of Ox-resistant CRC cells.

Effects of Smilax China L. on the Growth of Skin Cancer Cells (토복령(土茯笭)이 피부암 세포의 성장에 미치는 영향)

  • Si-Yeol Song;Min-Yeong Jung;Jeong-Hwa Choi;Soo-Yeon Park
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.37 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • Objectives : We aimed to study the effect of Smilax China L.(SCL), which has anti-inflammatory, antioxidant, and anticancer effects, on the growth of skin cancer cells. Methods : HaCaT cells, a normal human cell line, and skin cancer cells including A431, SK-MEL-5 and SK-MEL-28 cells were treated with Smilax China L. ethanol extract(SCL-EtOH) at concentrations of 5, 10, 20 and 40㎍/㎖. Meanwhile, JB6 Cl41, a normal mouse epithelial cell line, was treated with epidermal growth factor(EGF) and phorbol 12-myristate 13-acetate(TPA), an inflammatory factor, to induce cell transformation and treated with SCL-EtOH. In addition, we treated SK-MEL-5 and SK-MEL-28 cells with SCL-EtOH at various concentrations and checked the effect on the cell cycle. Results : As a result, it showed no toxicity to HaCaT cells up to the highest concentration of 40㎍/㎖, and significant cell growth inhibition to A431, SK-MEL-5 and SK-MEL-28 cells in a time- and concentration-dependent manner. In addition, as a result of checking the shape of skin cancer cells according to SCL-EtOH treatment, it was observed that as the concentration increased, the number of normally attached and growing cells decreased and the shape of the cells changed. Colony formation was significantly reduced in a concentration-dependent manner in JB6 Cl41 cells treated with EGF or TPA. Flow cytometry analysis with propidium iodide(PI) staining showed that SCL-EtOH induced the G2/M phase arrest. We further confirmed the decrease in Cyclin B1 expression and increase in p27 expression associated with the G2/M phase of the cell cycle through western blot analysis. Flow cytometry analysis confirmed that SCL-EtOH induced cell apoptosis. Furthermore, through Western blot analysis, it was observed that the expression of cleaved-caspase-7, which is related to apoptosis, increased. Finally, it was confirmed that the expression of COX-2, an inflammatory marker protein, decreased in a concentration-dependent manner with SCL-EtOH. Conclusions : Through the above results, we have established a basis for applying SCL to the treatment of skin cancer.

Clinical Analysis According to $p21^{Waf1/Cip1}\;and\;p27^{kip1}$ Expression in Gastric Cancer (위암에서의 $p21^{Waf1/Cip1}\;and\;p27^{kip1}$ 단백 발현)

  • Kim, Sin-Sun;Park, Yong-Geun;Jun, Kyong-Hwa;Jung, Hun;Song, Gyo-Young;Kim, Jin-Joo;Chin, Hyung-Min;Kim, Wook;Park, Cho-Hyun;Park, Seung-Man;Lim, Keun-Woo;Kim, Seung-Nam;Jeon, Hae-Myung
    • Journal of Gastric Cancer
    • /
    • v.6 no.1
    • /
    • pp.36-42
    • /
    • 2006
  • Purpose: The $p21^{Waf1/Cip1}$ protein Inhibits the cell cycle by Inhibiting the phosphorylation at the $G1{\rightarrow}S$ check point, and the $p27^{kip1}$ protein similarly performs the suppressor function by controlling the p27-mediated G1 arrest. In this study, we analysed the clinical status and survival rates in correlations with p21 and p27 expression patterns in gastric cancer. Materials and Methods: Between 1993 and 1997, 192 patients who underwent surgeries in Catholic Medical Center were analysed retrospectively in this study. Immunohistochemical staining was performed and if the nuclei of the tumor cells were stained, we assumed those as positive results. Statistical analysis was based on clinicopathological findings and differences in survival rates. Results: The expression rate of p27 was 28.1% and 15.6% in p21 each. The ratio of T1-2(80.0%) was significantly high in p21 (+), but the ratio of T3-4 (50.6%) was slightly high in p21 (-). There was no statistical significance regarding other factors. The results in p27 was not much different from expression rate of p21 in T-stage. In addition, p27 expression in diffuse type (91.3%) was higher than in intestinal type (62.7%) by Lauren's classification (P<0.05). Also, there was no statistical significance in other factors. In the correlation of p21 and p27, p27 was positive when p21 was positive (53.5%). Conversely, p27 was negative when p21 was negative (76.5%, p<0.05). In the p21 and p27 combination test, there was higher rate of T1-2 (87.5%) in p21 (+)/p27 (+), and higher rate of T3-4 (58.1%) in p21 (-)/p27 (-) (P<0.05). Results showed higher rate of intestinal type (100%) in p21 (+)/p27 (+), and diffuse type (87.0%) was dominant in p21 (-)/p27 (-) (P<0.05) by Lauren's classification. Moreover, there was no statistical significance in the 5-year survival rate in the expression of p21 and p27, and the 5-year survival rate was highest in the case of p21 (+)/p27 (+) without statistical significance. Conclusion: In our study, $p21^{Waf1/Cip1}\;and\;p27^{kip1}$ expressed similar patterns. The expression of $p21^{Waf1/Cip1}\;and\;p27^{kip1}$ affected the degree of invasiveness of the tumor, and. Combined examination result revealed the correlation of $p21^{Waf1/Cip1}\;and\;p27^{kip1}$ with Lauren's classification and depth of invasion of the tumor. However, we assumed that little difference between the survival rates depending on expression of $p21^{Waf1/Cip1}\;and\;p27^{kip1}$ has limited their value as predictable prognostic indicators.

  • PDF

Correlation of Proliferating Cell Nuclear Antigen (PCNA) Expression and S-phase Fraction, Survival Rate in Primary Non-Small Cell Lung Cancer (원발성 비소세포 폐암에서 PCNA의 발현정도와 암세포의 분열능 및 생존률과의 관계)

  • Yang, Sei-Hoon;Kim, Hak-Ryul;Gu, Ki-Seon;Jung, Byung-Hak;Jeong, Eun-Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.4
    • /
    • pp.756-765
    • /
    • 1997
  • Background : To study the prognosis of patients with lung cancer, many investigators have reported the methods to detect cell proliferation in tissues including PCNA, thymidine autoradiography, flow cytometry and Ki-67. PCNA, also known as cyclin, is a cell related nuclear protein with 36KD intranuclear polypeptide that is maximally elevated in S phase of proliferating cells. In this study, PCNA was identified by paraffin-embedding tissue using immunohistochemistry which has an advantage of simplicity and maintenance of tissue architecture. The variation of PCNA expression is known to be related with proliferating fraction, histologic type, anatomic(TNM) stage, degree of cell differentiation, S-phase fraction and survival rate. We analyzed the correlation between PCNA expression and S-phase fraction, survival. Method : To investigate expression of PCNA in primary lung cancer, we used immunohistochemical stain to paraffin-embedded sections of 57 resected primary non-small cell lung cancer specimen and the results were analyzed according to the cell type, cell differentiation, TNM stage, S-phase fraction and survival. Results : PCNA expression was divided into five group according to degree of staging(-, +, ++, +++, ++++). Squamous cell type showed high positivity than in adenocarcinoma. Nonsignificant difference related to TNM stage was noticed. Nonsignificant difference related to degree of cell differentiation was noticed. S-phase fraction was increased with advance of PCNA positivity, but it could not reach the statistic significance. The 2 year survival rate and median survival time were -50% 13 months, +75% 41.3 months, ++73% 33.6 months, +++67% 29.0 months, ++++25% 9 months with statistic significance (P<0.05, Kaplan-Meier, generalized Wilcox). Conclusion : From this study, PCNA expression was high positive in squamous cell cancer. And, there was no relationship between PCNA positivity and TNM stage, cellular differentiation or S-phase fraction. But, the patients with high positive PCNA staining showed poor survival rate than the patients with lower positive PCNA staining (p<0.05). It was concluded that PCNA immunostaining is a simple and useful method for survival prediction in paraffin embedded tissue of non-small cell lung cancer.

  • PDF

Effects of Baicalin on Gene Expression Profiles during Adipogenesis of 3T3-L1 Cells (3T3-L1 세포의 지방세포형성과정에서 Baicalin에 의한 유전자 발현 프로파일 분석)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Chung, Sang-In;Cho, Soo-Hyun;Yoon, Yoo-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.1
    • /
    • pp.54-63
    • /
    • 2010
  • Baicalin, a flavonoid, was shown to have diverse effects such as anti-inflammatory, anti-cancer, anti-viral, anti-bacterial and others. Recently, we found that the baicalin inhibits adipogenesis through the modulations of anti-adipogenic and pro-adipogenic factors of the adipogenesis pathway. In the present study, we further characterized the molecular mechanism of the anti-adipogenic effect of baicalin using microarray technology. Microarray analyses were conducted to analyze the gene expression profiles during the differentiation time course (0 day, 2 day, 4 day and 7 day) in 3T3-L1 cells with or without baicalin treatment. We identified a total of 3972 genes of which expressions were changed more than 2 fold. These 3972 genes were further analyzed using hierarchical clustering analysis, resulting in 20 clusters. Four clusters among 20 showed clearly up-regulated expression patterns (cluster 8 and cluster 10) or clearly down-regulated expression patterns (cluster 12 and cluster 14) by baicalin treatment for over-all differentiation period. The cluster 8 and cluster 10 included many genes which enhance cell proliferation or inhibit adipogenesis. On the other hand, the cluster 12 and cluster 14 included many genes which are related with proliferation inhibition, cell cycle arrest, cell growth suppression or adipogenesis induction. In conclusion, these data provide detailed information on the molecular mechanism of baicalin-induced inhibition of adipogenesis.

Induction of G2/M Arrest and Apoptosis by the Methanol Extract of Typha orientalis in Human Colon Adenocarcinoma HT29 Cells (포황 메탄올 추출물에 의한 인체 대장암 세포주 HT29의 G2/M Arrest 및 Apoptosis 유발)

  • Jin, Soojung;Yun, Seung-Geun;Oh, You Na;Lee, Ji-Young;Park, Hyun-Jin;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.425-432
    • /
    • 2013
  • Typha orientalis, also known as bulrush or cattail, is a perennial herbaceous plant found in freshwater wetlands and has been widely used in constructed wetlands for wastewater treatment. Recent data has revealed that SH21B, a mixture composed of seven herbs including T. orientalis, exhibited an anti-adipogenic activity by the inhibition of the expression of adipogenic regulators. However, the anti-cancer effect of T. orientalis and its molecular mechanisms remain unclear. In this study, we evaluated the anti-cancer effect and its mechanism in the methanol extract of T. orientalis (METO) on human colon carcinoma HT29 cells. It was found that METO treatment showed cytotoxic activity in a dose-dependent manner, and induced G2/M cell cycle arrest and apoptosis in HT29 cells. The induction of G2/M arrest by METO was associated with the up-regulation of phospho-Cdc2 (Tyr15), an inactive form of Cdc2 and the down-regulation of Cdc25c phosphatase. METO also induced tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 (WAF1/CIP1) expression. In addition, METO-induced apoptosis was characterized by the proteolytic activation of caspase-3, degradation of poly ADP ribose polymerase (PARP), and up-regulation of death receptor FAS and pro-apoptotic Bax expression. Collectively, these results indicate that the cell cycle inhibition and apoptosis induction of METO in HT29 cells allows for the possibility of its use in anti-cancer therapies.

EFFECT OF CURCUMIN AND RESVERATROL ON THE CELL CYCLE REGULATION, APOPTOSIS AND INHIBITION OF METASTASIS RELATED PROTEINS IN HN-4 CELLS (Curcumin과 resveratrol에 의한 두경부암 유래의 HN-4 세포의 세포주기, 세포사 및 전이관련 단백질의 발현 조절)

  • Kim, Sa-Yub;Lee, Sang-Han;Kwon, Taeg-Kyu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.5
    • /
    • pp.272-281
    • /
    • 2003
  • Nontraditional or alternative medicine is becoming an increasingly attractive approach for the treatment of various inflammatory disorders and cancers. Curcumin is the major constitute of turmoric powder extracted from the rhizomes of the plant Curcuma longa. Resveratrol is a phytoalexin present in grapes and a variety of medicinal plants. In this report, We investigated the effect of curcumin and resveratrol on regulatory protein of cell cycle, induction of apoptosis and MMP activity. Treatment with 75 M curcumin for 24 hrs produced morphological changing in HN-4 cells. Curcumin and resveratrol inhibited the cellular growth in HN-4 cells. Inhibition of cell growth was associated with down-regulation of cell cycle regulatory proteins. Curcumin-induced caspase-3 activation and Bax degradation were dose-dependent with a maximal effect at a concentration of 100 M. The elevated caspase-3 activity in curcumin treated HN-4 cells are correlated with down-regulation of survivin and cIAP1, but not cIAP2. Curcumin induced a dose-dependent increase of cytochrome c in the cytosol. Curcumin induced-apoptosis was mediated through the release of cytochrome c. In addition, curcumin-induced apoptosis was caused by the generation of reactive oxygen species, which was prevented by antioxidant N-acetyl-cysteine (NAC). Cotreatment with NAC markedly prevented cytochrome c release, Bax cleavage and cell death. Also resveratrol-induced apoptosis was preceded by down-regulation of the anti-apoptotic Bcl-2, cIAP1, and caspase-3 activity. However, resveratrol-induced apoptosis was not prevented by antioxidant NAC. In addition, HN-4 cells release basal levels of MMP2 when cultured in serum-free medium. Treatment of the cells with various concentrations of PMA for 24 hr induced the expression and secretion of latent MMP9 as determined by gelatin zymography. HN-4 cells were treated with various concentrations of curcumin and resveratrol in the presence of 75 nM PMA, and MMP2 and 9 activities were inhibited by curcumin and resveratrol. These findings have implications for developing curcumin-based anticancer and anti-inflammation therapies.

($P16^{ink4}$ Methylation in Squamous Cell Carcinoma of the Oral Cavity. (구강 편평세포암종에서 $P16^{ink4}$ 유전자의 Methylation에 대한 연구)

  • Kang, Gin-Won;Kim, Kyung-Wook;Lyu, Jin-Woo;Kim, Chang-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.2
    • /
    • pp.164-173
    • /
    • 2000
  • The p16 protein is a cyclin dependent kinase inhibitor that inhibits cell cycle progression from $G_1$ phase to S phase in cell cycle. Many p16 gene mutations have been noted in many cancer-cell lines and in some primary cancers, and alterations of p16 gene function by DNA methylation have been noticed in various kinds of cancer tissues and cell-lines. There have been a large body of literature has accumulated indicating that abnormal patterns of DNA methylation (both hypomethylation and hypermethylation) occur in a wide variety of human neoplasma and that these aberrations of DNA methylation may play an important epigenetic role in the development and progression of neoplasia. DNA methylation is a part of the inheritable epigenetic system that influences expression or silencing of genes necessary for normal differentiation and proliferation. Gene activity may be silenced by methylation of up steream regulatory regions. Reactivation is associated with demethylation. Although evidence or a high incidence of p16 alterations in a variety of cell lines and primary tumors has been reported, that has been contested by other investigators. The precise mechanisms by which abnormal methylation might contribute to carcinogenesis are still not fully elucidated, but conceivably could involve the modulation of oncogene and other important regulatory gene expression, in addition to creating areas of genetic instability, thus predisposing to mutational events causing neoplasia. There have been many variable results of studies of head and neck squamous cell carcinoma(HNSCC). This investigation was studied on 13 primary HNSCC for p16 gene status by protein expression in immunohistochemistry, and DNA genetic/epigenetic analyzed to determine the incidence, the mechanisms, and the potential biological significance of its Inactivation. As methylation detection method of p16 gene, the methylation specific PCR(MSP) is sensitive and specific for methylation of any block of CpG sites in a CpG islands using bisulfite-modified DNA. The genomic DNA is modified by treatment with sodium bisulfate, which converts all unmethylated cytosines to uracil(thymidine). The primers designed for MSP were chosen for regions containing frequent cytosines (to distinguish unmodified from modified DNA), and CpG pairs near the 5' end of the primers (to provide maximal discrimination in the PCR between methylated and unmethylated DNA). The two strands of DNA are no longer complementary after bisulfite treatment, primers can be designed for either modified strand. In this study, 13 paraffin embedded block tissues were used, so the fragment of DNA to be amplified was intentionally small, to allow the assessment of methylation pattern in a limited region and to facilitate the application of this technique to samlples. In this 13 primary HNSCC tissues, there was no methylation of p16 promoter gene (detected by MSP and automatic sequencing). The p16 protein-specific immunohistochemical staining was performed on 13 paraffin embedded primary HNSCC tissue samples. Twelve cases among the 13 showed altered expression of p16 proteins (negative expression). In this study, The author suggested that low expression of p16 protein may play an important role in human HNSCC, and this study suggested that many kinds of genetic mechanisms including DNA methylation may play the role in carcinogenesis.

  • PDF

Apoptotic Effect of Co-Treatment with Valproic Acid and 17AAG on Human Osteosarcoma Cells (Valproic acid와 17AAG의 병용처리가 사람골육종세포에 미치는 세포자멸사 효과에 대한 연구)

  • Park, Jun-Young;Park, Se-Jin;Kim, In-Ryoung;Park, Bong-Soo;Jeong, Sung-Hee;Ko, Myung-Yun;Ahn, Yong-Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2011
  • Valproic acid (VPA) is a well-known anticonvulsive agent and has been used in the treatment of epilepsy for almost 30 years. VPA emerged in 1997 as an antineoplastic agent. And it is known that antitmor activity of VPA is associated with its targeted at histone deacetylases. 17AAG, Inhibition of HSP90 leads to the proteasome degradation of the HSP90 client proteins, such as Akt, Raf/Ras, Erk, VEGF, cyclin D and p53, and causes potent antitumor activity. It is reported that 17AAG-induced HSP90 inhibition results in prevention of cell proliferation and induction of apoptosis in several types of cancer. This study was undertaken to investigate the synergistic apoptotic effect of co-treatment with the histone deacetylases inhibitor, VPA and the HSP90 inhibitor, 17AAG on human osteosarcoma (HOS) cells. Cell viability was evaluated by trypan-blue exclusion. Induction and augmentation of apoptosis were confirmed by Hoechst staining, flow cytometry (DNA hypoploidy and MMP change), Westen blot analysis and immunofluorescent staining. In this study, HOS cells co-treated with VPA and 17AAG showed several lines of apoptotic manifestation such as nuclear condensations, the reduction of MMP, the decrease of DNA content, the release of cytochrome c into cytosol, the translocation of AIF onto nuclei, and activation of caspase-3, caspase-7 and PARP whereas each single treated HOS cells did not. Although the single treatment of 1 mM VPA or 0.5 ${\mu}M$ 17AAG for 48 h did not induce apoptosis, the co-treatment with them induced prominently apoptosis. Therefore our data in this study provide the possibility that combination therapy with VPA and 17AAG could be considered as a novel therapeutic strategy for human osteosarcoma.

Anti-obesity effect of EGCG and glucosamine-6-phosphate through decreased expression of genes related to adipogenesis and cell cycle arrest in 3T3-L1 adipocytes (Adipogenesis관련 유전자발현감소와 Cell Cycle Arrest를 통한 EGCG와 Glucosamine-6-Phosphate의 Anti-Obesity 효과)

  • Kim, Kkot Byeol;Jang, Seong hee
    • Journal of Nutrition and Health
    • /
    • v.47 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Purpose: Several studies have proven that EGCG, the primary green tea catechin, and glucosamine-6-phosphate (PGlc) reduce triglyceride contents in 3T3-L1 adipocytes. The objective of this study is to evaluate the combination effect of EGCG and PGlc on decline of accumulated fat in differentiated 3T3-L1 adipocytes. Methods: EGCG and PGlc were administered for 6 day for differentiation of 3T3-L1 adipocytes. Cell viability was measured using the CCK assay kit. In addition, TG accumulation in culture 3T3-L1 adipocytes was investigated by Oil Red O staining. We examined the expres-sion level of several genes and proteins associated with adipogenesis and lipolysis using real-time RT-PCR and Western blot analysis. A flow cytometer Calibar was used to assess the effect of EGCG and PGluco on cell-cycle progression of differentiating 3T3-L1 cells. Results: Intracelluar lipid accumulation was significantly decreased by combination treatment with EGCG $60{\mu}M$ and PGlc $200{\mu}g/m$ compared with control and EGCG treatment alone. In addition, use of combination treatment resulted in directly decreased expression of $PPAR{\gamma}$, $C/EBP{\alpha}$, and SREBP1. In addition, it inhibited adipocyte differentiation and adipogenesis through downstream regulation of adipogenic target genes such as FAS, ACSL1, and LPL, and the inhibitory action of EGCG and PGlc was found to inhibit the mitotic clonal expansion (MCE) process as evidenced by impaired cell cycle entry into S phase and the S to G2/M phase transition of confluent cells and levels of cell cycle regulating proteins such as cyclin A and CDK2. Conclusion: Combination treatment of EGCG and PGlc inhibited adipocyte differentiation through decreased expression of genes related to adipogenesis and adipogenic and cell cycle arrest in early stage of adipocyte differentiation.