• Title/Summary/Keyword: cyclic shear

Search Result 734, Processing Time 0.027 seconds

Nonlinear Analysis of Precast Concrete Wall Structures (프리캐스트 콘크리트 판구조의 비선형 해석)

  • 서수연;이원호;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.189-196
    • /
    • 2000
  • The objective of this paper is to propose an analysis technique to predict the behavior of PC wall structures subjected to cyclic load. While PC wall panel is idealized by finite elements, the joints at which PC walls are connected each other are idealized by nonlinear spring elements. Axial and shear spring elements are developed for simulating shear, compression and tension behaviors of joints. The strength and stiffness of each spring elements we presented from the previous research results and incorporated into the computer program of DRAIN-2DX. The proposed analysis technique is evaluated by analyzing specimens previously tested and comparing with those. On the strength, stiffness, energy dissipation and lateral drift, analytical results show good agreements with test results. This means the proposed technique is effective to predict the response of the PC wall structures.

  • PDF

Thin-Walled Beam Model for Structural Analysis of SWATH (SWATH의 구조해석을 위한 Thin-Walled Beam 모델)

  • Sang-Gab Lee;Yoon-Sup Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.136-152
    • /
    • 1993
  • This study is intended to develop an accurate and efficient, analytical thin-walled beam model, and to analyze overall behavior of SWATH ship under repeated overloads. SWATH ship is idealized to a simple thin-walled beam of channel type. An analytical beam model is formulated by the stress component with geometrically(fully) nonlinear thin-walled beam and treated numerically by the Finite Element Method. An efficient cyclic plasticity model is also included, suitable for material nonlinear behavior under complex loading conditions. The local stress distribution can be very exactly represented and the material yielding propagation, easily traced. In addition, the local treatment of the effect of shear deformation improves the representation of deformation and shear stress distribution along the section contour. It is desirable to use the analytical thin-walled beam at initial design stage, and is needed to improve the practical thin-walled beam model advancing the current approach.

  • PDF

Retrofitting Effects and Structural Behavior of RC Columns Strengthened with X-Bracing Using Carbon Fiber Anchor (탄소섬유 앵커 X-브레이싱으로 보강된 철근콘크리트 기둥의 구조거동 및 내진보강 효과)

  • Sim, Jong-Sung;Lee, Kang-Seok;Kwon, Hyuck-Woo;Kim, Hyun-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.323-331
    • /
    • 2012
  • This paper presents a new strengthening method on concrete column against seismic loads for structural performance tests. An X-bracing using high performance carbon fiber threads called the "Carbon fiber anchor X-bracing system" is used to connect RC frames internally. The carbon fiber sheet is wrapped around the column to fix the top and bottom of the column after Super anchor was installed by drilling hole on the column. The structural performance was evaluated experimentally and analytically. Two types of columns specimens were made; flexure fracture scaled model and shear fracture scaled model. For the performance evaluation, cyclic loading tests were conducted on moment and shear resisting columns with and without X bracing. Test results confirmed that the bracing system installed on RC columns enhanced the strength capacity and provided adequate ductility.

A Probabilistic Analysis of Liquefaction Potential and Pore Water Pressure Build up due to Earthquake (지진하중에 의한 액화의 가능성과 간극수압의 발생에 관한 확률론적 연구)

  • Kim, Young-Su;Lee, Song;Cho, Woo-Chul
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.31-44
    • /
    • 1992
  • The probabilistic and statistical model is used to estimate the probability of liquefaction potential and pore water pressure build up due to earthquake in fully saturated sand deposit for each case of being structure(anisotropic) or not(isotropic). To execute this paper, dynamic shear strength parameters to show the relationship between shear strength and cyclic loading under isotropic or anisotropic condition in saturated sand deposit are presented. Using these parameters, the program which Predicts Pore water Pressure build up due to earthquake is developed. Using the 3-dimensional Random Field Model considering uncertainty of resistance and strength parameter, the program which computes the probability of liquefaction potential is developed. The developed program is applied to a case study, and then the result shows that the probability of liquefaction in isotropic condition is higher than in anisotropic condition. The ratio of pore water pressure tends to decrease as Kc increases.

  • PDF

A Study on the Evaluation of Dynamic Behavior and Liquefaction Cau8ed by Earthquake of Sea Dike Structures on the Ground (방조제 축조 예정지반의 지진에 의한 액상화 거동 평가)

  • 도덕현;장병욱;고재만
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.43-56
    • /
    • 1993
  • The laboratory tests are performed on how the liquefaction potential of the sea dike structures on the saturated sand or silty sand seabed could be affected due to earthquake before and after construction results are given as follows ; 1. Earthquake damages to sea dike structures consist of lateral deformation, settlement, minor abnormality of the structures and differential settlement of embankments, etc. It is known that severe disasters due to this type of damages are not much documented. Because of its high relative cost of the preventive measures against this type of damages, the designing engineer has much freedom for the play of judgement and ingenuity in the selection of the construction methods, that is, by comparing the cost of the preventive design cost at a design stage to reconstruction cost after minor failure. 2. The factors controlling the liquefaction potential of the hydraulic fill structure are magnitude of earthquake(max. surface velocity), N-value(relative density), gradation, consistency(plastic limit), classification of soil(G & vs), ground water level, compaction method, volumetric shear stress and strain, effective confining stress, and primary consolidation. 3. The probability of liquefaction can be evaluated by the simple method based on SPT and CPT test results or the precise method based on laboratory test results. For sandy or silty sand seabed of the concerned area of this study, it is said that evaluation of liquefaction potential can be done by the one-dimensional analysis using some geotechnical parameters of soil such as Ip, Υt' gradation, N-value, OCR and classification of soils. 4. Based on above mentioned analysis, safety factor of liquefaction potential on the sea bed at the given site is Fs =0.84 when M = 5.23 or amax= 0.12g. With sea dike structures H = 42.5m and 35.5m on the same site Fs= 3.M~2.08 and Fs = 1.74~1.31 are obtained, respectively. local liquefaction can be expected at the toe of the sea dike constructed with hydraulic fill because of lack of constrained effective stress of the area.

  • PDF

Site response analysis using true coupled constitutive models for liquefaction triggering

  • Cristhian C. Mendoza-Bolanos;Andres Salas-Montoya;Oscar H. Moreno-Torres;Arturo I. Villegas-Andrade
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • This study focused on nonlinear effective stress site response analysis using two coupled constitutive models, that is, the DM model (Dafalias and Manzari 2004), which incorporated a simple plasticity sand model accounting for fabric change effects, and the PMDY03 model (Khosravifar et al. 2018), that is, a 3D model for earthquake-induced liquefaction triggering and postliquefaction response. A detailed parametric study was conducted to validate the effectiveness of nonlinear site response analysis and porewater pressure (PWP) generation through a true coupled formulation for assessing the initiation of liquefaction at ground level. The coupled models demonstrated accurate prediction of liquefaction triggering, which was in line with established empirical liquefaction triggering relations in published databases. Several limitations were identified in the evaluation of liquefaction using the cyclic stress method, despite its widespread implementation for calculating liquefaction triggering. Variations in shear stiffness, represented by changes in shear wave velocity (Vs1), exerted the most significant influence on site response. The study further indicated that substantial differences in response spectra between nonlinear total stress and nonlinear effective stress analyses primarily occurred when liquefaction was triggered or on the verge of being triggered, as shown by excess PWP ratios approaching unity. These differences diminished when liquefaction occurred towards the later stages of intense shaking. The soil response was predominantly influenced by the higher stiffness values present prior to liquefaction. A key contribution of this study was to validate the criteria used to assess the triggering of level-ground liquefaction using true coupled effective-stress constitutive models, while also confirming the reliability of numerical approximations including the PDMY03 and DM models. These models effectively captured the principal characteristics of liquefaction observed in field tests and laboratory experiments.

Seismic control of high-speed railway bridge using S-shaped steel damping friction bearing

  • Guo, Wei;Wang, Yang;Zhai, Zhipeng;Du, Qiaodan
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.479-500
    • /
    • 2022
  • In this study, a new type of isolation bearing is proposed by combining S-shaped steel plate dampers (SSDs) with a spherical steel bearing, and the seismic control effect of a five-span standard high-speed railway bridge is investigated. The advantages of the proposed S-shaped steel damping friction bearing (SSDFB) are that it cannot only lengthen the structural periods, dissipate the seismic energy, but also prevent bridge unseating due to the restraint effectiveness of SSDs in the large relative displacements between the girders and piers. This study first presents a detailed description and working principle of the SSDFB. Then, mechanical modeling of the SSDFB was derived to fundamentally define its cyclic behavior and obtain key mechanical parameters. The numerical model of the SSDFB's critical component SSD was verified by comparing it with the experimental results. After that, parameter studies of the dimensions and number of SSDs, the friction coefficient, and the gap length of the SSDFBs were conducted. Finally, the longitudinal seismic responses of the bridge with SSDFBs were compared with the bridge with spherical bearing and spherical bearing with strengthened shear keys. The results showed that the SSDFB can not only significantly mitigate the shear force responses and residual displacement in bridge substructures but also can effectively reduce girder displacement and prevent bridge unseating, at a cost of inelastic deformation of the SSDs, which is easy to replace. In conclusion, the SSDFB is expected to be a cost-effective option with both multi-stage energy dissipation and restraint capacity, making it particularly suitable for seismic isolation application to high-speed railway bridges.

Comparative analysis of damping ratio determination methods based on dynamic triaxial tests

  • Song Dongsong;Liu Hongshuai
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.249-267
    • /
    • 2023
  • Various methods for determining the damping ratio have been proposed by scholars both domestically and abroad. However, no comparative analysis of different determination methods has been seen yet. In this study, typical sand (Fujian standard sand) and cohesive soils were selected as experimental objects, and undrained strain-controlled dynamic triaxial tests were conducted. The differences between existing damping ratio determination methods were theoretically compared and analyzed. The results showed that the hysteresis curve of cohesive soils had better symmetry and more closely conformed to the definition of equivalent linear viscoelasticity. For non-cohesive soils, the differences in damping ratio determined by six methods were significant. The differences decreased with increasing confining pressure and relative density, but increased gradually with increasing shear strain, especially at high shear strains, where the maximum relative error reached 200%. For cohesive soils, the differences in damping ratio determined by six methods were relatively small, with a maximum relative error of about 50%. Moreover, they were less affected by effective confining pressure and had the same changing trend under different effective confining pressures. The damping ratio determination method has a large effect on the seismic response of soils distributed by non-cohesive soils, with a maximum relative error of about 15% for the PGA and up to about 30% for the Sa. However, for soil layers distributed by cohesive soils, the damping ratio determination method has less influence on the seismic response. Therefore, it is necessary to adopt a unified damping ratio determination method for non-cohesive soils, which can effectively avoid artificial errors caused by different determination methods.

A Study on the Structure Behavior of Dry-assembled Wall with Concrete Blocks subjected to Cyclic Lateral Load (콘크리트블록으로 건식조립된 벽체의 수평반복하중에 대한 구조거동 연구)

  • Lee, Joong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.440-447
    • /
    • 2020
  • Masonry structures are used as bearing walls in small buildings, but they are generally considered non-bearing walls. They are used as partition walls that divide the interior spaces of the frame structures of buildings. In addition, wetting techniques that use mortar as an adhesive between blocks or bricks in construction are vulnerable to climatic conditions, especially cracks in mortar, which can cause conduction collapse of the walls in seismic loading. The purpose of this research was to propose a dry concrete block construction method that complements the weak axial shear stiffness and improves the weakness of the wet construction method as well as to investigate its structural behavior. In this study, the material properties of concrete blocks were examined, and the seismic performance of the proposed dry assembly structure was verified by structural behavior tests on horizontal cyclic loads. First, in these study results, concrete blocks can be applied to the dry block construction method instead of wet construction methods because they secure more than C-type blocks in KS regulations. Second, the structural performance of the wall against a horizontal cyclic load indicates that the resisting force of the assembly block wall is increased by increasing the horizontal length of the wall, forming several diagonal cracks. Finally, the proposed dry block wall structure requires a seismic performance assessment considering that the ratio of the shape of the wall by height and length is considered a major influence variable on the structural behavior under a horizontal load.

Structural Capacity Evaluation of Hybrid Precast Concrete Beam-Column Connections Subjected to Cyclic Loading (반복하중을 받는 하이브리드 프리캐스트 보-기둥 접합부의 성능평가)

  • Choi, Hyun-Ki;Yoo, Chang-Hee;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • In this study, new moment-resisting precast concrete beam-column joint made up of hybrid steel concrete was developed and tested. This beam-column joint is proposed for use in moderate seismic regions. It has square hollow tubular section in concrete column and connecting plate in precast U-beam. The steel elements in column and beam members were connected using bolt. Furthermore, in order to prevent the premature failure of concrete in hybrid steel-concrete connection, ECC(engineered cementitious composite) was used. An experimental study was carried out investigating the joint behavior subjected to reversed cyclic loading and constant axial compressive load. Two precast beam-column joint specimens and monolithic reinforced concrete joint specimen were tested. The variables for interior joints were cast-in-situ concrete area and transverse reinforcement within the joint. Tests were carried out under displacement controlled reverse cyclic load with a constant axial load. Joint performance is evaluated on the basis of connection strength, stiffness, energy dissipation, and displacement capacity. The test results showed that significant differences in structural behavior between the two types of connection because of different bonding characteristics between steel and concrete; steel and ECC. The proposed joint detail can induce to move the plastic hinge out of the ECC and steel plate. And proposed precast connection showed better performance than the monolithic connection by providing sufficient moment-resisting behavior suitable for applications in moderate seismic regions.