• Title/Summary/Keyword: cyclic load test

Search Result 580, Processing Time 0.022 seconds

Evaluation on Cyclic Flexural Behavior of HSRC (Hybrid H-steel-reinforced Concrete) Beams Connected with Steel Columns (강재 기둥과 하이브리드 강재 보-RC 보 접합부의 반복 휨 거동 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.291-298
    • /
    • 2017
  • The objective of the present study is to evaluate the cyclic flexural behavior of a hybrid H-steel-reinforced concrete (HSRC) beam at the connection with a H-steel column. The test parameter investigated was the configuration of dowel bars at the joint region of the HSRC beam. The HSRC beam was designed to have plastic hinge at the end of the H-steel beam rather than the RC beam section near the joint. All specimens showed a considerable ductile behavior without a sudden drop of th applied load, resulting in the displacement ductility ratio exceeding 4.6, although an unexpected premature welding failure occurred at the flanges of H-steel beams connecting to H-steel column. The crack propagation in the RC beam region, flexural strength, and ductility of HSRC beam system were insignificantly affected by the configuration of dowel bars. The flexural strength of HSRC beam system governed by the yielding of H-steel beam could be conservatively evaluated from the assumption of a perfect plasticity state along the section.

Reliability Assessment of Lead-contained and Lead-free BGA Solder Joints under Cyclic Bending Loads (굽힘 하중하에서 유연 및 무연 솔더 조인트의 신뢰성 평가)

  • Kim Il-Ho;Lee Soon-Bok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.63-72
    • /
    • 2006
  • Mobile products, such as cellular phones, PDA and notebook, are subjected to many different mechanical loads, which include bending, twisting, impact shock and vibration. In this study, a cyclic bending test of the BGA package was performed to evaluate the fatigue life. Special bending tester, which was suitable for electronic package, was developed using an electromagnetic actuator. A nonlinear finite element model was used to simulate the mechanical bending deformation of solder joint in BGA packages. The fatigue life of lead-free (95.5Sn4.0Ag0.5Cu) solder joints was compared with that of lead-contained (63Sn37Pb). When the applied load to the specimen is small, the lead-free solder has longer fatigue life than lead-contained solder. The fatigue crack is initialized at the exterior solder joints and is propagated into the inner solder joints.

  • PDF

Notch Strain Analysis of Cruciform Welded Joint using Nonlinear Kinematic Hardening Model (비선형 이동 경화모델을 이용한 십자형 필릿 용접부의 변형율 해석)

  • Kim, Yooil;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • Several fatigue damages have recently been reported which cannot be resolved in the context of the existing fatigue design procedure, and they are suspected to be the cracks induced by the low cycle fatigue mechanism. To tackle the problem, a series of material tests together with fatigue tests have been carried out, and elasto-plastic notch strain analysis using nonlinear kinematic hardening model has been performed. The cyclic stress-strain curves are obtained and the nonlinear kinematic hardening model was calibrated based on the obtained material data. Also, the fatigue test with non-load-carrying cruciform fillet welded joint has been performed in low cycle fatigue regime. Then, the notch strain analyses have been carried out to find the precise elasto-plastic behavior of the material at the notch root of the cruciform joint. The variation of the material property from the base metal via HAZ up to the weld metal was taken into account using spatial variation of the material property. Then the detail elasto-plastic behavior of the welded joint subjected to the repeated cyclic loading has been investigated further through the comparison with the prediction with Neuber's rule. The calibration of the nonlinear kinematic hardening model and nonlinear notch strain analyses have been performed using the commercial FE program ABAQUS.

Seismic behavior of steel reinforced concrete (SRC) T-shaped column-beam planar and 3D hybrid joints under cyclic loads

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.555-572
    • /
    • 2015
  • This paper presents an experimental study of three two-dimensional (2D/planar) steel reinforced concrete (SRC) T-shaped column-RC beam hybrid joints and six 3D SRC T-shaped column-steel beam hybrid joints under low cyclic reversed loads. Considering different categories of steel configuration types in column cross section and horizontal loading angles for the specimens were selected, and a reliable structural testing system for the spatial loading was employed in the tests. The load-displacement curves, carrying capacity, energy dissipation capacity, ductility and deformation characteristics of the test subassemblies were analyzed. Especially, the seismic performance discrepancies between planar hybrid joints and 3D hybrid joints were intensively compared. The failure modes for planar loading and spatial loading observed in the tests showed that the shear-diagonal compressive failure was the dominating failure mode for all the specimens. In addition, the 3D hybrid joints illustrated plumper hysteretic loops for the columns configured with solid-web steel, but a little more pinched hysteretic loops for the columns configured with T-shaped steel or channel-shaped steel, better energy dissipation capacity & ductility, and larger interlayer deformation capacity than those of the planar hybrid joints. Furthermore, it was revealed that the hysteretic loops for the specimens under $45^{\circ}$ loading angle are generally plumper than those for the specimens under $30^{\circ}$ loading angle. Finally, the effects of steel configuration type and loading angle on the seismic damage for the specimens were analyzed by means of the Park-Ang model.

Evaluation of Three Support Shapes on Behavior of New Bolted Connection BBCC in Modularized Prefabricated Steel Structures

  • Naserabad, Alifazl Azizi;Ghasemi, Mohammad Reza;Shabakhty, Naser;Arab, Hammed Ghohani
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1639-1653
    • /
    • 2018
  • Bolted connections are suitable due to high quality prefabrication in the factory and erection in the workplace. Prefabrication and modularization cause high speed of erection and fabrication, high quality and quick return of investment. Their technical hitches transportation can be removed by prefabrication of joints and small fabrication of components. Box-columns are suitable members for bolted structures such as welded steel structures with moment frames in two directions etc., but their continual fabrication in multi-story buildings and performing the internal continuity plate in them will cause some practical dilemmas. The details of the proposal technique introduced here, is to remove such problems from the box columns. Besides, some other advantages include new prefabricated bolted beam-to-column connections referred to BBCC. This connection is a set of plates joined to columns, beams, support, and bolts. For a better understanding of its fabrication and erection techniques, two connection and one structural maquettes are made. The present work aims to study the cyclic behavior of connection numerically. To verify the accuracy of model, a similar tested connection was modelled. Its verification was then made through comparison with test results. The behavior of connection was evaluated for an exterior connection using three different support shapes. The effects of support shapes on rigidity, ductility, rotation capacity, maximum strength, four rad rotation strength were compared to those of the AISC seismic provision requirements. It was found that single beams support has all the AISC seismic provision requirements for special moment frames with and without a continuity plate, and box with continuity plate is the best support in the BBCC connection.

Damage Index Evaluation Based on Dissipated Energy of SCH 40 3-Inch Carbon Steel Pipe Elbows Under Cyclic Loading (주기적 하중을 받는 SCH 40 3-Inch 탄소강관엘보의 소산에너지 기반의 손상지수 평가)

  • Kim, Sung-Wan;Yun, Da-Woon;Jeon, Bub-Gyu;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.112-119
    • /
    • 2021
  • The failure mode of piping systems due to seismic loads is the low-cycle fatigue failure with ratcheting, and it was found that the element in which nonlinear behavior is concentrated and damage occurs is the elbow. In this study, to quantitatively express the failure criteria for a pipe elbow of SCH40 3-inch carbon steel under low-cycle fatigue, the limit state was defined as leakage, and the in-plane cyclic loading test was conducted. For the carbon steel pipe elbow, which is the vulnerable part to seismic load of piping systems, the damage index was represented using the moment-deformation angle relationship, and it was compared and analyzed with the damage index calculated using the force-displacement relationship. An attempt was made to quantitatively express the limit state of the carbon steel pipe elbow involving leakage using the damage index, which was based on the dissipated energy caused by repeated external forces.

Seismic behavior of steel and sisal fiber reinforced beam-column joint under cyclic loading

  • S.M. Kavitha;G. Venkatesan;Siva Avudaiappan;Chunwei Zhang
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.481-492
    • /
    • 2023
  • The past earthquakes revealed the importance of the design of moment-resisting reinforced concrete framed structures with ductile behavior. Due to seismic activity, failures in framed structures are widespread in beam-column joints. Hence, the joints must be designed to possess sufficient strength and stiffness. This paper investigates the effects of fibers on the ductility of hybrid fiber reinforced self-compacting concrete (HFRSCC) when subjected to seismic actions; overcoming bottlenecks at the beam-column joints has been studied by adding low modulus sisal fiber and high modulus steel fiber. For this, the optimized dose of hooked end steel fiber content (1.5%) was kept constant, and the sisal fiber content was varied at the rate of 0.1%, up to 0.3%. The seismic performance parameters, such as load-displacement behavior, ductility, energy absorption capacity, stiffness degradation, and energy dissipation capacity, were studied. The ductility factor and the cumulative energy dissipation capacity of the hybrid fiber (steel fiber, 1.5% and sisal fiber, 0.2%) added beam-column joint specimen is 100% and 121% greater than the control specimen, respectively. And also the stiffness of the hybrid fiber reinforced specimen is 100% higher than the control specimen. Thus, the test results showed that adding hybrid fibers instead of mono fibers could significantly enhance the seismic performance parameters. Therefore, the hybrid fiber reinforced concrete with 1.5% steel and 0.2% sisal fiber can be effectively used to design structures in seismic-prone areas.

Experimental Study on the Retrofit Method to Improve the Structural Capacity of Reinforced Concrete Shear Wall (철근콘크리트 전단벽의 구조성능개선을 위한 보강방안에 관한 실험적 연구)

  • Ha, Gee-Joo;Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.79-86
    • /
    • 2008
  • Four RC shear wall specimens with a/d of 2.2 are designed. And a flexural retrofitting is performed for one specimen by both enlarging wall section and adding additional vertical reinforcements. Also the effectivity of jaketting wall sides is evaluated for the two methods using only steel plate or welded wire mesh with enlargement of section. Cyclic loads are applied to the retrofitted specimens according to the loading history proposed by ACI under constant axial force. Test result showed that the strength and ductility of specimen were improved where the section was enlarged after the installation of additional vertical reinforcements. Confining the ends of wall by U shape W.W.F. with enlargement of section showed most excellent structural capacity regarding to the strength and ductility. Retrofitting by using steel plate was much effective not only to protect the abrupt decrease of strength after yield but also to improve the deformation capacity.

Reversed Lateral Load Tests on RC Frames Retrofitted with BRB and FRP (좌굴방지가새와 FRP로 보강된 RC골조의 반복 횡하중 실험)

  • Lee, Han-Seon;Lee, Kyung-Bo;Hwang, Seong-Jun;Cho, Chang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.683-692
    • /
    • 2011
  • In piloti-type low-rise RC residential buildings, severe damages have been usually concentrated at piloti stories under the earthquake. In this study, a piloti story was retrofitted by installation of buckling-restrained braces (BRB's) to increase strength and stiffness of piloti story and by application of fiber reinforced polymer (FRP) sheet on columns to avoid the brittle shear and axial failure of columns. To verify this retrofit performance, reversed cyclic lateral load tests were performed on 1:5 scale bare and retrofitted frames. The test results showed that yield strength (43.2 kN) appeared to be significantly larger than design value (30 kN) due to the increase of strength in the compression side, but the stiffness value (11.6 kN/mm) turned out to be approximately one-half of the design value (24.2 kN/mm). The reasons for this difference in stiffness were due to slippage at joint between the frame and the BRB's, displacement and rotation at footing. The energy absorption capacity of the retrofitted frame was 7.5 times larger than that of the bare frame. The change of the number of load cells under the footing from 2 to 1 reduced lateral stiffness from 11.6 kN/mm to 6 kN/mm, which was only three times larger than that of the bare frame (2.1 kN/mm).

Retrofitted built-up steel angle members for enhancing bearing capacity of latticed towers: Experiment

  • Wang, Jian-Tao;Wu, Xiao-Hong;Yang, Bin;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.681-695
    • /
    • 2021
  • Many existing transmission or communication towers designed several decades ago have undergone nonreversible performance degradation, making it hardly meet the additional requirements from upgrades in wind load design codes and extra services of electricity and communication. Therefore, a new-type non-destructive reinforcement method was proposed to reduce the on-site operation of drilling and welding for improving the quality and efficiency of reinforcement. Six built-up steel angle members were tested under compression to examine the reinforcement performance. Subsequently, the cyclic loading test was conducted on a pair of steel angle tower sub-structures to investigate the reinforcement effect, and a simplified prediction method was finally established for calculating the buckling bearing capacity of those new-type retrofitted built-up steel angles. The results indicates that: no apparent difference exists in the initial stiffness for the built-up specimens compared to the unreinforced steel angles; retrofitting the steel angles by single-bolt clamps can guarantee a relatively reasonable reinforcement effect and is suggested for the reduced additional weight and higher construction efficiency; for the substructure test, the latticed substructure retrofitted by the proposed reinforcement method significantly improves the lateral stiffness, the non-deformability and energy dissipation capacity; moreover, an apparent pinching behavior exists in the hysteretic loops, and there is no obvious yield plateau in the skeleton curves; finally, the accuracy validation result indicates that the proposed theoretical model achieves a reasonable agreement with the test results. Accordingly, this study can provide valuable references for the design and application of the non-destructive upgrading project of steel angle towers.