• Title/Summary/Keyword: cyclic 3',5'-guanosine monophosphate

Search Result 34, Processing Time 0.029 seconds

Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine

  • Hong, Noo Ri;Park, Hyun Soo;Ahn, Tae Seok;Kim, Hyun Jung;Ha, Ki-Tae;Kim, Byung Joo
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.314-321
    • /
    • 2015
  • Background: Ginseng belongs to the genus Panax. Its main active ingredients are the ginsenosides. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal (GI) tract. To understand the effects of ginsenoside Re (GRe) on GI motility, the authors investigated its effects on the pacemaker activity of ICCs of the murine small intestine. Methods: Interstitial cells of Cajal were dissociated from mouse small intestines by enzymatic digestion. The whole-cell patch clamp configuration was used to record pacemaker potentials in cultured ICCs. Changes in cyclic guanosine monophosphate (cGMP) content induced by GRe were investigated. Results: Ginsenoside Re ($20-40{\mu}M$) decreased the amplitude and frequency of ICC pacemaker activity in a concentration-dependent manner. This action was blocked by guanosine 50-[${\beta}-thio$]diphosphate [a guanosine-5'-triphosphate (GTP)-binding protein inhibitor] and by glibenclamide [an adenosine triphosphate (ATP)-sensitive $K^{+}$ channel blocker]. To study the GRe-induced signaling pathway in ICCs, the effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) and RP-8-CPT-cGMPS (a protein kinase G inhibitor) were examined. Both inhibitors blocked the inhibitory effect of GRe on ICC pacemaker activity. L-NG-nitroarginine methyl ester ($100{\mu}M$), which is a nonselective nitric oxide synthase (NOS) inhibitor, blocked the effects of GRe on ICC pacemaker activity and GRe-stimulated cGMP production in ICCs. Conclusion: In cultured murine ICCs, GRe inhibits the pacemaker activity of ICCs via the ATP-sensitive potassium ($K^{+}$) channel and the cGMP/NO-dependent pathway. Ginsenoside Re may be a basis for developing novel spasmolytic agents to prevent or alleviate GI motility dysfunction.

Attenuation of monocrotaline-induced pulmonary hypertension with DA-8159, a potent PDE 5 inhibitor

  • Ahn, Gook-Jun;Kang, Kyung-Koo;Sohn, Yong-Sung;Choi, Seu-Min;Kim, Ju-Mi;Kim, Dong-Hwan;Ahn, Byoung-Ok;Kim, Won-Bae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.249.1-249.1
    • /
    • 2002
  • This study was carried out to demonstrate the effects of oral administration of DA-8159. a selective phosphodiesterase 5 inhibitor. on development of pulmonary hypertension induced by monocrotaline (MCT). MCT-treated rats(60mg/kg) were divided into three groups and orally administered vehicle, 1 mg/kg or 5 mg/kgg of DA-8159 twice a day for 3 weeks. Increased right ventricular weights, medial wall thickening in pulmonary arteries. myocardial fibrosis, decrease of plasma cyclic guanosine monophosphate (cGMP) level and body weight gains were shown in MCT group. (omitted)

  • PDF

Effects of L-arginine on Endothelium Derived Factors and Cyclic Nucleotides in Broilers under Low Ambient Temperature

  • Han, Bo;Yoon, Soonseek;Han, Hongryul;Wang, Xiaolong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1570-1574
    • /
    • 2004
  • A flock of AA breed chickens were reared in peterstme brood-vait chamber and were provided with high energy pelleted feed. At 14 d of age, a total of 350 birds were randomly divided into 3 groups as follows: 100 birds were exposed to normal ambient temperature of 20$^{\circ}C$ for control group; 150 birds were exposed to lower ambient temperature of 11$^{\circ}C$ to induce ascites (treatment I); and another group of 100 birds were exposed to lower ambient temperature of 11$^{\circ}C$ and fed diet containing 1% L-arginine for ascitic prophylactic treatment (treatment II). Samples were collected from blood and abdominal fluid of chicken at 3, 4, 5, 6 and 7 wk of age subsequently, to analysis the contents of plasma endothelin (ET-1), angiotensin II (Ang II), cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP). The results indicated that the contents of cAMP, cGMP, and Ang II in reatment I and ascitic broilers were higher than the corresponding control group (p<0.01, p<0.05), ET-1 of preascitic broilers were control group (p<0.05), while there was an insignificant difference with later ascitic broilers. The contents of cAMP and cGMP in treatment II were higher than the treatment I and control groups (p<0.01, p<0.05), whereas, the contents of Ang II were gradually decreased compared to the control group (p<0.05), the contents of ET-1 were insignificantly different. On further analysis, the increased plasma Ang II at low ambient temperature condition in broilers made endothelium cell secretion of increased ET-1, cAMP, cGMP and decreased NO. Therefore, low temperature accelerated ascites syndrome in broilers. Supplemently L-arginine can decrease ET-1, and increase cAMP and cGMP. It is concluded that cAMP mediated in broilers pulmonary hypertension syndrome.

Sildenafil Citrate Induces Migration of Mouse Aortic Endothelial Cells and Proteinase Secretion

  • Kim, Young-Il;Oh, In-Suk;Park, Seung-Moon;Kim, Hwan-Gyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.402-407
    • /
    • 2006
  • Vascular endothelial cells release proteinases that degrade the extracellular matrix (ECM), thus enabling cell migration during angiogenesis and vasculogenesis. Sildenafil citrate stimulates the nitric oxide-cyclic guanosine monophosphate pathway through inhibition of phosphodiesterase type V (PDE5). In this report, we examined the mechanisms underlying sildenafil citrate-induced cell migration using cultured mouse aortic endothelial cells (MAECs). Sildenafil citrate induced migration and proteinase secretion by murine endothelial cells. Sildenafil citrate induced the secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9, which is inhibited by $NF-{\kappa}B$ inhibitors. Sildenafil citrate also induced the secretion of plasmin, which is inhibited by PI 3'-kinase inhibitors. It is suggested that sildenafil citrate-induced migrating activity in endothelial cells may be accomplished by increased secretion of proteinases.

Modulation of $Ca^{2+}-Activated$ Potassium Channels by cGMP-Dependent Signal Transduction Mechanism in Cerebral Arterial Smooth Muscle Cell of the Rabbit

  • Han, Jin;Kim, Na-Ri;Lee, Kwang-Bok;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.445-453
    • /
    • 2000
  • The present investigation tested the hypothesis that the activation of protein kinase G (PKG) leads to a phosphorylation of $Ca^{2+}-activated$ potassium channel $(K_{Ca}\;channel)$ and is involved in the activation of $K_{Ca}$ channel activity in cerebral arterial smooth muscle cells of the rabbit. Single-channel currents were recorded in cell-attached and inside-out patch configurations of patch-clamp techniques. Both molsidomine derivative 3-morpholinosydnonimine-N-ethylcarbamide $(SIN-1,\;50\;{\mu}M)$ and 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate $(8-pCPT-cGMP,\;100\;{\mu}M),$ a membrane-permeable analogue of cGMP, increased the $K_{Ca}$ channel activity in the cell-attached patch configuration, and the effect was removed upon washout of the drugs. In inside-out patches, single-channel current amplitude was not changed by SIN-1 and 8-pCPT-cGMP. Application of ATP $(100\;{\mu}M),$ cGMP $(100\;{\mu}M),$ ATP+cGMP $(100\;{\mu}M\;each),$ PKG $(5\;U/{\mu}l),$ ATP $(100\;{\mu}M)+PKG\;(5\;U/{\mu}l),$ or cGMP $(100\;{\mu}M)+PKG\;(5\;U/{\mu}l)$ did not increase the channel activity. ATP $(100\;{\mu}M)+cGMP\;(100\;{\mu}M)+PKG\;(5\;U/{\mu}l)$ added directly to the intracellular phase of inside-out patches increased the channel activity with no changes in the conductance. The heat-inactivated PKG had no effect on the channel activity, and the effect of PKG was inhibited by 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate, Rp-isomer $(Rp-pCPT-cGMP,\;100\;{\mu}M),$ a potent inhibitor of PKG or protein phosphatase 2A (PP2A, 1 U/ml). In the presence of okadaic acid (OA, 5 nM), PP2A had no effect on the channel activity. The $K_{Ca}$ channel activity spontaneously decayed to the control level upon washout of ATP, cGMP and PKG, and this was prevented by OA (5 nM) in the medium. These results suggest that the PKG-mediated phosphorylations of $K_{Ca}$ channels, or some associated proteins in the membrane patch increase the activity of the $K_{Ca}$ channel, and the activation may be associated with the vasodilating action.

  • PDF

Inhibitory effects of total saponin from Korean Red Ginseng on [Ca2+]i mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1,4,5-trisphosphate receptor type I in human platelets

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.354-364
    • /
    • 2015
  • Background: Intracellular $Ca^{2+}$($[Ca^{2+}]_i$) is a platelet aggregation-inducing molecule. Therefore, understanding the inhibitory mechanism of $[Ca^{2+}]_i$mobilization is very important to evaluate the antiplatelet effect of a substance. This study was carried out to understand the $Ca^{2+}$-antagonistic effect of total saponin from Korean Red Ginseng (KRG-TS). Methods: We investigated the $Ca^{2+}$-antagonistic effect of KRG-TS on cyclic nucleotides-associated phosphorylation of inositol 1,4,5-trisphosphate receptor type I ($IP_3RI$) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) in thrombin (0.05 U/mL)-stimulated human platelet aggregation. Results: The inhibition of $[Ca^{2+}]_i$ mobilization by KRG-TS was increased by a PKA inhibitor (Rp-8-BrcAMPS), which was more stronger than the inhibition by a cyclic guanosine monophosphate (cGMP)- dependent protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). In addition, Rp-8-Br-cAMPS inhibited phosphorylation of PKA catalytic subunit (PKAc) ($Thr^{197}$) by KRG-TS. The phosphorylation of $IP_3RI$ ($Ser^{1756}$) by KRG-TS was very strongly inhibited by Rp-8-Br-cAMPS compared with that by Rp-8-BrcGMPS. These results suggest that the inhibitory effect of $[Ca^{2+}]_i$ mobilization by KRG-TS is more strongly dependent on a cAMP/PKA pathway than a cGMP/PKG pathway. KRG-TS also inhibited the release of adenosine triphosphate and serotonin. In addition, only G-Rg3 of protopanaxadiol in KRG-TS inhibited thrombin-induced platelet aggregation. Conclusion: These results strongly indicate that KRG-TS is a potent beneficial compound that inhibits $[Ca^{2+}]_i$ mobilization in thrombin-platelet interactions, which may result in the prevention of platelet aggregation-mediated thrombotic disease.

Role of Nitric Oxide in Pepsinogen Secretion from Rat Gastric Chief Cells

  • Sung, Dae-Suk;Seo, Dong-Wan;Choi, Don-Woong;Ahn, Seong-Hoon;Hong, Sung-Youl;Lee, Hoi-Young;Han, Jeung-Whan;Lee, Hyang-Woo
    • Biomolecules & Therapeutics
    • /
    • v.7 no.2
    • /
    • pp.105-111
    • /
    • 1999
  • Nitric oxide (NO), a cellular messenger synthesized from L-arginine by NO synthase (NOS, EC.1.14.13.39), is considered to be a regulator of gastric secretion. In the present study, the role of NO in the regulation of exocrine secretion was investigated in rat gastric chief cells. Treatment of chief cells with carba-chol resulted in an increase in the arginine conversion to citrulline, the amount of $NO_{x}$, the release of pepsine-gen, and the level of cGMP Especially, carbachol-stimulated increase of arginine to citrulline transformation, the amount of $NO_{x}$, cGMP level and the release of pepsinogen were partially reduced by the natural NOS inhibitor, $N^{G}$-monomethyl-L-arginine (MMA) and $N^{G}$, $N^{G}$-dimethyl-L-arginine (DMA). Furthermore, MMA- and DMA-induced decrease of pepsinogen secretion showed dose-dependent patters. Activation of NOS is one of the early events in receptor-mediated cascade of reactions in gastric chief cells and NO, not completely, but partially mediates gastric secretion. Agonist-stimulated pepsinogen secretion in chief cells has been considered to be mediated in adenosine 3',5'-cyclic monophosphate pathway and/or guanosine 3', 5'-cyclic monophosphate (cGMP) pathway. Taken together, the above results suggest that partial decrease of exocrine secretion following treatment of NOS inhibitor may result from the inactivation of NOS and subsequent guano- late cyclase, and NO/cGMP pathway may play a pivotal role in exocrine secretion.

  • PDF

Ginsenoside Re Enriched Fraction (GS-F3K1) from Ginseng Berries Ameliorates Ethanol-Induced Erectile Dysfunction via Nitric Oxide-cGMP Pathway

  • Pyo, Mi Kyung;Park, Kwang-Hyun;Oh, Myeong Hwan;Lee, Hwan;Park, Young Sik;Kim, Na Young;Park, So Hee;Song, Ji Hye;Park, Jong Dae;Jung, Se-Hee;Lee, Bong-Gun;Won, Beom Young;Shin, Ki Young;Lee, Hyung Gun
    • Natural Product Sciences
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2016
  • Erectile dysfunction (ED) is a highly prevalent disorder that affects millions of men and considered to be an early symptom of atherosclerosis and a precursor of various systemic vascular disorders. The aim of the present study was to prepare ginsenoside Re enriched fraction (GS-F3K1, ginsenoside Re 10%, w/w) from ginseng berries flesh and to investigate the enhanced activities of GS-F3K1 on alcohol-induced ED. GS-F3K1 was prepared by the continuous liquid and solid separating centrifugation and circulatory ultrafiltration from ginseng berries flesh. GS-F3K1 was administered for 5 weeks in ethanol-induced ED rat by oral administration of 20% ethanol. To investigate the effects of GS-F3K1 on ED model, the levels of nitrite expression, cyclic guanosine monophosphate (cGMP) and erectile response of the penile corpus cavernosum of rat were measured. The erectile response of the corpus cavernosum was restored after GS-F3K1 administration, to a level similar to the normal group. The level of nitrite and cGMP expression in the corpus cavernosum of GS-F3K1-administered male rats was increased significantly compared to positive control group. GS-F3K1 from ginseng berries should effectively restore ethanol-induced ED in male rats and could be developed as a new functional food for the elderly men.

Experimental Study of Patholobi Caulis on the Transient Cerebral Ischemia in Rats (계혈등(鷄血藤) 추출물이 뇌허혈에 미치는 실험적 연구)

  • Lee, Sang-Lok;Choi, Chan-Hun;Baek, Jin-Ung;Youn, Dae-Hwan;Jeong, Sang-Hun;Han, Ung;Jeong, Hyun-Woo;Kim, Gye-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1127-1134
    • /
    • 2007
  • The study was designed to investigate the mechanism of Patholoobi Caulis freeze dried powder (PCF) on the regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in normal rats and cytokines production ($IL-1{\beta}$, $TNF-{\alpha}$, IL-10, $TGF-{\beta}$) in cerebral ischemic rats. The results in normal rats were as follows ; Increase of PCF-induced rCBF was significantly inhibited by pretreatment with methylene blue (10 ${\mu}g/kg$, I.p.), an inhibitor of guanylate cyclase, and was inhibited by indomethacin (1 mg/kg, i.p.), an inhibitor of cyclooxygenase. Increase of PCF-induced MABP was decreased by pretreatment with methylene blue, but was increased by indomethacin. These results suggested that the mechanism of action PCF was mediated by cyclic 3',5'-guanosine monophosphate. The results in cerebral ischemic rats were as follows ; In cytokine production in serum from femoral arterial blood 1 hr after middle cerebral arterial occlusion, PCF (10 mg/kg. i.p.) significantly decreased $IL-1{\beta}$ and $TNF-{\alpha}$ production, and increased IL-10 production compared with control group. In cytokine production in serum from femoral arterial blood 1 hr 1 hr after reperfusion, PCF (10 mg/kg, i.p.) significantly decreased $IL-1{\beta}$ production, and incresed IL-10 production compared with control group. These results suggested that PCF was significantly and stably increased regional cerebral blood flow by inhibiting $IL-1{\beta}$ production, and by accelerating IL-10 production.

Increase of L-type Calcium Current by cGMP-dependent Protein Kinase Regulates in Rabbit Ventricular Myocytes

  • Han, Jin;Kim, Na-Ri;Kim, Eui-Yong;Ho, Won-Kyung;Earm, Yung-E;Kim, Han-Kyoun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.733-742
    • /
    • 1998
  • Background: We have previously reported that not only cGMP but also 8-Br-cGMP or 8-pCPT-cGMP, specific and potent stimulators of cGMP-dependent protein kinase (cGMP-PK), increased basal L-type calcium current $(I_{Ca})$ in rabbit ventricular myocytes. Our findings in rabbit ventricular myocytes were entirely different from the earlier findings in different species, suggesting that the activation of cGMP-PK is involved in the facilitation of $I_{Ca}}$ by cGMP. However, there is no direct evidence that cGMP-PK can stimulate $I_{Ca}}$ in rabbit ventricular myocytes. In this report, we focused on the direct effect of cGMP-PK on $I_{Ca}}$ in rabbit ventricular myocytes. Methods and Results: We isolated single ventricular myocytes of rabbit hearts by using enzymatic dissociation. Regulation of $I_{Ca}}$ by cGMP-PK was investigated in rabbit ventricular myocytes using whole-cell voltage clamp method. $I_{Ca}}$ was elicited by a depolarizing pulse to +10 mV from a holding potential of -40 mV. Extracellular 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate (8-pCPT-cGMP), potent stimulator of cGMP-dependent protein kinase (cGMP-PK), increased basal $I_{Ca}}$. cGMP-PK also increased basal $I_{Ca}}$. The stimulation of basal $I_{Ca}}$ by cGMP-PK required both 8-Br-cGMP in low concentration and intracellular ATP to be present. The stimulation of basal $I_{Ca}}$ by cGMP-PK was blocked by heat inactivation of the cGMP-PK and by bath application of 8-(4-chlorophenylthio)-guanosine-3',5'-cyclic monophosphate, Rp-isomer (Rp-pCPT-cGMP), a phosphodiesterase-resistant cGMP-PK inhibitor. When $I_{Ca}}$ was increased by internal application of cGMP-PK, IBMX resulted in an additional stimulation of $I_{Ca}}$. In the presence of cGMP-PK, already increased $I_{Ca}}$ was potentiated by bath application of isoprenaline or forskolin or intracellular application of cAMP. Conclusions: We present evidence that cGMP-PK stimulated basal $I_{Ca}}$ by a direct phosphorylation of L-type calcium channel or associated regulatory protein in rabbit ventricular myocytes.

  • PDF