• Title/Summary/Keyword: cycle slips

Search Result 19, Processing Time 0.029 seconds

The Cycle-Slip Correction of Kinematic Data using Doppler frequency (Doppler frequency를 이용한 Kinematic 자료의 Cycle-Slip 보정)

  • 손홍규;김중경;신대호
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.105-109
    • /
    • 2003
  • The occurrence of cycle slips is a major limiting factor to attain high precision positioning and navigation results with GPS. Cycle slips must be correctly repaired at the data processing stage. In this study, the technique to find cycle slips in the processing of data collected with Trimble 4700 GPS receivers is suggested. The use of Kalman filtering techniques is used in an attempt to reduce the effect of the noise in the different quantities involved and to improve the accuracy in cycle slip correction.

  • PDF

Carrier Phase-Based Gps/Pseudolite/Ins Integration: Solutions Of Ambiguity Resolution And Cycle Slip Detection/Identification

  • Park, Woon-Young;Lee, Hung-Kyu;Park, Suk-Kun;Lee, Hyun-Jik
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.02a
    • /
    • pp.82-94
    • /
    • 2004
  • This paper addresses solutions to the challenges of carrier phase integer ambiguity resolution and cycle slip detection/identification, for maintaining high accuracy of an integrated GPS/Pseudolite/INS system. Such a hybrid positioning and navigation system is an augmentation of standard GPS/INS systems in localized areas. To achieve the goal of high accuracy, the carrier phase measurements with correctly estimated integer ambiguities must be utilized to update the system integration filter's states. The occurrence of a cycle slip that is undetected is, however, can significantly degrade the filter's performance. This contribution presents an effective approach to increase the reliability and speed of integer ambiguity resolution through using pseudolite and INS measurements, with special emphasis on reducing the ambiguity search space. In addition, an algorithm which can effectively detect and correct the cycle slips is described as well. The algorithm utilizes additional position information provided by the INS, and applies a statistical technique known as the cumulative-sum (CUSUM) test that is very sensitive to abrupt changes of mean values. Results of simulation studies and field tests indicate that the algorithms are performed pretty well, so that the accuracy and performance of the integrated system can be maintained, even if cycle slips exist in the raw GPS measurements.

  • PDF

Cycle Slip Detection and Ambiguity Resolution for High Accuracy of an Intergrated GPS/Pseudolite/INS System

  • PARK, Woon-Young;LEE, Hung-Kyu;LEE, Jae-One
    • Korean Journal of Geomatics
    • /
    • v.3 no.2
    • /
    • pp.129-140
    • /
    • 2004
  • This paper addresses solutions th the challenges of carrier phase integer ambiguity resolution and cycle slip detection/identification, for maintaining high accuracy of an integrated GPS/Pseudolite/INS system. Such a hybrid positioning and navigation system is an augmentation of standard GPS/INS systems in localized areas. To achieve the goal of high accuracy, the carrier phase measurements with correctly estimated integer ambiguities must be utilized to update the system integration filter's states. The contribution presents an effective approach to increase the reliability and speed of integer ambiguity resolution through using pseudolite and INS measurements, with special emphasis on reducing the ambiguity search space. In addition, an algorithm which can effectively detect and correct the cycle slips is described as well. The algorithm utilizes additional position information provided by the INS, and applies a statistical technique known as th cumulative-sun (CUSUM) test that is very sensitive to abrupt changes of mean values. Results of simulation studies and field tests indicate that the algorithms are performed pretty well, so that the accuracy and performance of the integrated system can be maintained, even if cycle slips exist in the raw GPS measurements.

  • PDF

A Development of Carrier Phase DGPS Aided with INS

  • Lee, Ki-Won;Lee, Jae-Ho;Seo, Hung-Serk;Sung, Tae-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.133.1-133
    • /
    • 2001
  • When the signals from satellite vehicles are blocked, it is impossible to provide positioning information. Integrating CDGPS with INS, the performances of output can be greatly improved. In the CDGPS/INS integrated system, the error growth in INS can be efficiently suppressed due to CDGPS. On the contrary, the search range of integer ambiguities can be reduced with the aids of INS. Furthermore, cycle slips in carrier phase measurements can be easily detected using INS. The paper presents a CDGPS/INS integrated system that utilizes CDGPS aided with INS. Using the outputs of CDGPS/INS integration filter, a method to reduce search range of integer ambiguities is proposed. A method to detect cycle slips in carrier phase measurements is ...

  • PDF

A Two-antenna GPS Receiver Integrated with Dead Reckoning Sensors (Two-antenna 자세 결정용 GPS 수신기와 DR 센서의 통합 시스템)

  • 이재호;서홍석;성태경;박찬식;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.186-186
    • /
    • 2000
  • In the GPS/DR integrated system, the GPS position(or velocity) is used to compensate the DR output and to calibrate errors in the DR sensor. This synergistic relationship ensures that the calibrated DR accuracy can be maintained even when the GPS signal is blocked. Because of the observability problem, however, the DR sensors are not sufficiently calibrated when the vehicle speed is low. This problem can be solved if we use a multi-antenna GPS receiver for attitude determination instead of conventional one. This paper designs a two-antenna GPS receiver integrated with DR sensors. The proposed integration system has three remarkable features. First, the DR sensor can be calibrated regardless of the vehicle speed with the aid of two-antenna GPS receiver. Secondly, the search space of integer ambiguities in GPS carrier-phase measurements is reduced to a part of the surface of the sphere using DR heading. Thirdly, the detection resolution of cycle-slips in GPS carrier-phase measurements is improved with the aid of DR heading. From the experimental result, it is shown that the search grace is drastically reduced to about 3120 of the non-aided case and the cycle-slips of 1 or half cycle can be detected.

  • PDF

An attitude determination GPS Receiver Integrated with Dead Reckoning Sensors (자세 결정용 GPS 수신기와 DR을 이용한 통합 시스템)

  • Lee, Jae-Ho;Seo, Hung-Seok;Sung, Tae-Kyung;Lee, Sang-Jeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.2
    • /
    • pp.72-79
    • /
    • 2001
  • In the GPS/DR integrated system, the GPS position(or velocity) is used to compensate the DR output and to calibrate errors of the DR sensor. This synergistic relationship ensures that the calibrated DR accuracy can be maintained even when the GPS signal is blocked. Because of the observability problem, however, the DR sensors are not sufficiently calibrated when the vehicle speed is low. This problem can be solved if we use a multi-antenna GPS receiver for attitude determination instead of conventional one. This paper designs a two-antenna GP receiver integrated with DR sensors. The proposed integration system has three remarkable features. First, the DR sensor can be calibrated regardless of the vehicle speed with the aid of two-antenna GPS receiver. Secondly, the search space of integer ambiguities in GPS carrier-phase measurements is reduced to a part of the surface of the sphere using DR heading. Thirdly, the detection resolution of cycle-slips in GPS carrier-phase measurements is improved with the aid of DR heading. From the experimental result, it is shown that the search space is drastically reduced to about 3/20 of the non-aided case and the cycle-slips of 1 or half cycle can be detected.

  • PDF

Quality Assessment of GPS L2C Signals and Measurements

  • Yun, Seonghyeon;Lee, Hungkyu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • A series of numerical experiments with measurements observed at continuously operating reference stations (CORS) of the international GNSS services (IGS) and the national geographical information institute of Korea (NGII) have been intensively carried out to evaluate the quality of pseudo-ranges and carrier-phases of GPS L2C signal obtained by various receiver types, benign and harsh operational environment. In this analysis, some quality measures, such as signal-to-noise ratio (SNR), the magnitude of multipath, and the number of cycle slips, the pseudo-range and carrier phase obtaining rate were computed and compared. The SNR analysis revealed an impressive result that the trend in the SNR of C/A and the L2C comparably depends upon type of receivers. The result of multipath analysis also showed clearly different tendency depending on the receiver types. The reason for this inconsistent tendency was seemed to be that the different multipath mitigation algorithm built-in each receiver. The number of L2C cycle slip was less than P2(Y), and L2C measurements obtaining rate was higher than that of P2(Y) in three receiver types. In the harsh observational environment, L2C quality was not only superior to P2(Y) in all aspects such as SNR, multipath magnitude, the number of cycle slips, and measurement obtaining rate, but also it could maintain a level of quality equivalent to C/A. According to the results of this analysis, it's expected that improved positioning performance like accuracy and continuity can be got through the use of L2C instead of existing P2(Y).

The advanced Algorithm of Ambiguity Function Method far Realtime Precise GPS Positioning (실시간 정밀측위를 위한 AFM 알고리즘의 성능개선에 관한 연구)

  • 김용일;김동현
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.2
    • /
    • pp.167-179
    • /
    • 1996
  • The AFM (Ambiguity Function Method) is insensitive to the integer ambiguity and the presence of cycle slips in the carrier phase observations. But there are two significant problems with using the AM to determine GPS base-lines. The first problem is the long computation time required to determine the optim position. The second problem is that there may be sever maxima points that the AFM gorithm must discriminate between within the search volume in order to identify the optim position. A new gorithm which enables the AFM to be applied to the OTF (On-the-fly) environments by significantly shortening the computation time is proposed in this paper. In addition to it, sever statistic procedures which verify whether the optim position is true or not are proposed.

  • PDF

Development of Correction Algorithm for Integrated Strapdown INS/GPS by using Kalman Filter

  • Lee, Sang-Jong;Naumenko, C.;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 2001
  • The Global Positioning System(GPS) and the Strapdown Inertial Navigation System(SDINS) techniques have been widely utilized in many applications. However each system has its own weak point when used in a stand-alone mode. SDINS suffers from fast error accumulation dependent on an operating time while GPS has problem of cycle slips and just provides low update rate. The best solution is to integrate the GPS and SDINS system and its integration allows compensation for each shortcomings. This paper, first, is to define and derive error equations of integrated SDINS/GPS system before it will be applied on a real hardware system with gyro, accelerometer and GPS receiver. Second, the accuracy, availability and performance of this mechanization are verified on the simulation study.

  • PDF

Analysis of the GPS Error Effect through Simulation (시뮬레이션을 통한 GPS 오차의 영향 분석)

  • Jeon, Jae-Han;Kwon, Jay-Hyoun;Lee, Ji-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.397-405
    • /
    • 2008
  • The position accuracy is primarily dependent on the satellite position and signal delay caused by several elements. To know the effect of the delay on the estimated positions, we simulated GPS raw data (RINEX) with GPS errors using Bernese ver5.0. GPS errors used in this paper are Ionospheric delay, Cycle slip, Troposphere, DOP and Random error. If the baseline is short, the position error according to TEC is not large, since the ionospheric delay effect can be removed by ion-free combination. However, if the baseline is long, 3 dimensional position error up to 10cm is occurred. The 3D position error of coordinates with cycle slip is hardly ever changed up to 60% of cycle slip. Because the simulated cycle slips are equally distributed on satellites, the positioning was not seriously affected by the cycle slip. Also, if percentage of cycle slip is 60%, three dimensional error is sharply increased over 1m. The position error is calculated by using the observation data (2 hours) which was selected by DOP less than 3. And its accuracy is more improved about $3{\sim}4cm$.