• 제목/요약/키워드: cyanobacterial

검색결과 227건 처리시간 0.021초

대청호 수화발생시기의 미생물 다양성 및 계통분류학적 분석 (Dynamics of Bacterial Communities Analyzed by DGGE during Cyanobacterial Bloom in Daechung Reservoir, Korea)

  • 고소라;안치용;이영기;오희목
    • 환경생물
    • /
    • 제29권3호
    • /
    • pp.225-235
    • /
    • 2011
  • 하절기 수화발생이 빈번한 대청호에서 2003~2005년(3년)에 걸쳐 분자생태학적 방법의 하나인 DGGE를 이용하여 시간에 따른 미생물 군집구조의 변화를 연구하였다. 조사기간 동안 출현한 식물플랑크톤을 형태학적으로 분류한 결과 Cyanophyceae가 우점하였고, 이중에서 Microcystis, Planktothrix (Oscillatoria), Phormidium 그리고 Anabaena 속이 크게 우점하였다. 분자적 군집분석 방법으로서 16S rDNA의 DGGE profile 분석과 계통학적 분류에 의하여 우점하는 미생물 군집의 구조와 다양성을 확인하였다. Microcystis는 조사기간 동안 지속적으로 우점하였으나, Planktothrix는 2003년과 2004년 9월에, Anabaena는 2005년 9월, 그리고 Aphanizomenon은 2003년 8월에 우점하였다. DGGE와 계통분류학적 분석방법은 형태학적 분석법에 의해 얻지 못하는 새로운 정보를 제공하며, 남조류와 수생 세균사이의 상관관계를 추정할 수 있고, 그들의 유전적 다양성을 보다 자세하게 확인할 수 있다.

Optimal Growth Conditions for the Two Euryhaline Cyanobacterial Clones, Anabaena sp. CB-MAL21 and CB-MAL22 Isolated from Mankyeong Estuary, Korea

  • Kim, Young-Geel;Myung, Geum-Og;Yih, Won-Ho;Shin, Yoon-Keun
    • ALGAE
    • /
    • 제19권2호
    • /
    • pp.145-148
    • /
    • 2004
  • As a result of the 2-year monthly monitoring of the phytoplankton community at 3 stations in Mankyeong Estuary, Korea, we learned that cyan bacterial species of the genus Anabaena occurred at most sampling points with huge salinity differences (0.1-32.5 psu). We isolated several clones of Anabaena spp. from the monitoring stations, and screen out two euryhaline and nitrogen-fixing Anabaena clones, CB-MAL21 and CB-MAL22. The two clones were grown under various environmental gradients such as temperature (20, 30, 35 and 40$^{\circ}C$), salinity (0, 2, 5, 15 and 30psu), and $PO_4^{3-}$-P concentration (0, 1.6, 8.0, 40 and 200 ${\mu}M$M). Growth of CB-MAL21 and CB-MAL22 was measured by daily monitoring of chlorophyll fluorescence from each experimental culture for more than three serial transfers. Both the two experimental clones did not grow at 0psu. Maximal growth rates of the two clones were markedly reduced at lower $PO_4^{3-}$-P concentrations showing negligible growth at 0 and 1.6 ${\mu}M$M. However, growth of CB-MAL21 was not affected by low $NO_3^--$ concentration in culture media, showing the nitrogen-fixing ability. Maximum biomass yields of the two clones decreased dramatically at 35 and 40$^{\circ}C$. Optimal growth conditions for the two experimental clones were determined to be 20-30$^{\circ}C$, 40 ${\mu}M$M $PO_4^{3-}$-P, and wide salinity range from 5.0 to over 30psu. Best growth of CB-MAL21 was shown at (20$^{\circ}C$-15psu), which is less saline and cooler condition than those (i.e., 30$^{\circ}C$-30psu) for the best growth of CB-MAL22. The euryhaline and nitrogen-fixing CB-MAL21 strain thus can be a candidate laboratory culture for the future cyan bacterial marine biotechnology in temperate coastal waters.

Transcript accumulation of carotenoid biosynthesis genes in the cyanobacterium Synechocystis sp. PCC 6803 during the dark-to-light transition is mediated by photosynthetic electron transport

  • Ryu, Jee-Youn;Song, Ji-Young;Chung, Young-Ho;Park, Young-Mok;Chow, Wah-Soon;Park, Youn-Il
    • Plant Biotechnology Reports
    • /
    • 제4권2호
    • /
    • pp.149-155
    • /
    • 2010
  • Expression of the genes for carotenoid bio-synthesis (crt) is dependent on light, but little is known about the underlying mechanism of light sensing and signalling in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter, Synechocystis). In the present study, we investigated the light-induced increase in the transcript levels of Synechocystis crt genes, including phytoene synthase (crtB), phytoene desaturase (crtP), ${\zeta}$-carotene desaturase (crtQ), and ${\beta}$-carotene hydroxylase (crtR), during a darkto-light transition period. During the dark-to-light shift, the increase in the crt transcript levels was not affected by mutations in cyanobacterial photoreceptors, such as phytochromes (cph1, cph2 and cph3) and a cryptochrome-type photoreceptor (ccry), or respiratory electron transport components NDH and Cyd/CtaI. However, treatment with photosynthetic electron transport inhibitors significantly diminished the accumulation of crt gene transcripts. Therefore, the light induction of the Synechocystis crt gene expression is most likely mediated by photosynthetic electron transport rather than by cyanobacterial photoreceptors during the dark-to-light transition.

Evaluation of Methods for Cyanobacterial Cell Lysis and Toxin (Microcystin-LR) Extraction Using Chromatographic and Mass Spectrometric Analyses

  • Kim, In S.;Nguyen, Giang-Huong;Kim, Sung-Youn;Lee, Jin-Wook;Yu, Hye-Weon
    • Environmental Engineering Research
    • /
    • 제14권4호
    • /
    • pp.250-254
    • /
    • 2009
  • Contamination of microcystins, a family of heptapeptide hepatotoxins, in eutrophic water bodies is a worldwide problem. Due to their poisoning effects on animals and humans, there is a requirement to characterize and quantify all microcystins present in a sample. As microcystins are, for most part, intracellular toxins produced by some genera of cyanobacteria, lysing cyanobacterial cells to release all microcystins is considered an important step. To date, although many cell lysis methods have been used, little work has been conducted comparing the results of those different methods. In this study, various methods for cell lysis and toxin extraction from the cell lysates were investigated, including sonication, bead beating, freeze/thaw, lyophilization and lysing with TritonX-100 surfactant. It was found that lyophilization, followed by extraction with 75% methanol, was the most effective for extracting toxins from Microcystis aeruginosa cells. Another important step prior to the analysis is removing impurities and concentrating the target analyte. For these purposes, a C18 Sep-Pak solid phase extraction cartridge was used, with the percentage of the eluent methanol also evaluated. As a result, methanol percentages higher than 75% appeared to be the best eluting solvent in terms of microcystin-leucine-arginine (MC-LR) recovery efficiency for the further chromatographic and mass spectrometric analyses.

Dynamics and Control Methods of Cyanotoxins in Aquatic Ecosystem

  • Park, Ho-Dong;Han, Jisun;Jeon, Bong-seok
    • 생태와환경
    • /
    • 제49권2호
    • /
    • pp.67-79
    • /
    • 2016
  • Cyanotoxins in aquatic ecosystems have been investigated by many researchers worldwide. Cyanotoxins can be classified according to toxicity as neurotoxins (anatoxin-a, anatoxin-a(s), saxitoxins) or hepatotoxins (microcystins, nodularin, cylindrospermopsin). Microcystins are generally present within cyanobacterial cells and are released by damage to the cell membrane. Cyanotoxins have been reported to cause adverse effects and to accumulate in aquatic organisms in lakes, rivers and oceans. Possible pathways of microcystins in Lake Suwa, Japan, have been investigated from five perspectives: production, adsorption, physiochemical decomposition, bioaccumulation and biodegradation. In this study, temporal variability in microcystins in Lake Suwa were investigated over 25 years (1991~2015). In nature, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, during water treatment, the use of copper sulfate to remove algal cells causes extraction of a mess of microcystins. Cyanotoxins are removed by physical, chemical and biological methods, and the reduction of nutrients inflow is a basic method to prevent cyanobacterial bloom formation. However, this method is not effective for eutrophic lakes because nutrients are already present. The presence of a cyanotoxins can be a potential threat and therefore must be considered during water treatment. A complete understanding of the mechanism of cyanotoxins degradation in the ecosystem requires more intensive study, including a quantitative enumeration of cyanotoxin degrading microbes. This should be done in conjunction with an investigation of the microbial ecological mechanism of cyanobacteria degradation.

Comparative Studies on Growth and Phosphatase Activity of Endolithic Cyanobacterial Isolates of Chroococcidiopsis from Hot and Cold Deserts

  • BANERJEE, MEENAKSHI;DEBKUMARI, SHARMA
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.125-130
    • /
    • 2005
  • The growth and phosphatase (phosphomonoesterase) activity of Chroococcidiopsis culture isolated from the cryptoendoliths of the Antarctic were compared with a similar isolate from the Arizona hot desert. Such cyanobacteria living inside rocks share several features with the immobilized cells produced in the laboratory. This study has relevance because the availability of phosphorus is a key factor influencing the growth of these cyanobacteria in nature, in such unique ecological niches as the hot and cold deserts. Phosphatase activity therefore is of particular importance for these organisms if they are to survive without any other source of phosphorus availability. Also, there is paucity of knowledge regarding this aspect of study in cyanobacterial cultures from these extreme environments. The salient feature of this study shows the importance of specific pH and temperatures for growth and phosphatase activity of both cultures, although there were marked differences between the two isolates. The pH and temperature optima for growth and phosphatase activity (PMEase) of Chroococcidiopsis 1 and 2 were 9.5, $240^{\circ}C$ and 8.5, $40^{\circ}C$ respectively. The $K_m and V_max$ values of cultured Chroococcidiopsis 1 showed lower affinity of PMEase for the substrate compared to the enzyme affinity of the same organism when found within the rocks; Chroococcidiopsis 2 and Arizona rocks containing the same alga however showed similar affinity of PMEase for the substrate. An interesting observation was the similarity in response of immobilized Chroococcidiopsis 1 culture and the same organism in the Antarctic rocks to low light and low temperature stimulation of PMEase. This thermal response seems to be related to the ability of the immobilized Antarctic isolate and the rocks to either cryoprotect the PMEase or undergo a change to save the enzyme from becoming nonfunctional under low temperatures. The free cells of Chroococcidiopsis 1 culture however did not show such responses.

Cyanobacterial Diversity Shifts Induced by Butachlor in Selected Indian Rice Fields in Eastern Uttar Pradesh and Western Bihar Analyzed with PCR and DGGE

  • Kumari, Nidhi;Narayan, Om Prakash;Rai, Lal Chand
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권1호
    • /
    • pp.1-12
    • /
    • 2012
  • The present study examines the effects of 30 mg/kg butachlor on the cyanobacterial diversity of rice fields in Eastern Uttar Pradesh and Western Bihar in India. A total of 40 samples were grouped into three classes [(i) acidic, (ii) neutral, and (iii) alkaline soils], based on physicochemical and principle component analyses. Acidic soils mainly harbored Westillopsis, Trichormus, Anabaenopsis, and unicellular cyanobacteria; whereas Nostoc, Anabaena, Calothrix, Tolypothrix, and Aulosira were found in neutral and alkaline soils. Molecular characterization using 16S rRNA PCR and DGGE revealed the presence of 13 different phylotypes of cyanobacteria in these samples. Butachlor treatment of the soil samples led to the disappearance of 5 and the emergence of 2 additional phylotypes. A total of 40 DGGE bands showed significant reproducible changes upon treatment with butachlor. Phylogenetic analyses divided the phylotypes into five major clusters exhibiting interesting links with soil pH. Aulosira, Anabaena, Trichormus, and Anabaenopsis were sensitive to butachlor treatment, whereas uncultured cyanobacteria, a chroococcalean member, Westillopsis, Nostoc, Calothrix, Tolypothrix, Rivularia, Gloeotrichia, Fischerella, Leptolyngbya, and Cylindrospermum, appeared to be tolerant against butachlor at their native soil pH. Butachlor-induced inhibition of nitrogen fixation was found to be 65% (maximum) and 33% (minimum) in the soil samples of pH 9.23 and 5.20, respectively. In conclusion, low butachlor doses may prove beneficial in paddy fields having a neutral to alkaline soil pH.

Diversity of Heterocystous Filamentous Cyanobacteria (Blue-Green Algae) from Rice Paddy Fields and Their Differential Susceptibility to Ten Fungicides Used in Korea

  • Kim Jeong-Dong;Lee Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.240-246
    • /
    • 2006
  • Cyanobacteria are present abundantly in rice fields and are important in helping to maintain rice fields fertility through nitrogen fixation. Many rice fields soil contain a high density of cyanobactera, and over 50% of cyanobacterial genera that are in existence in rice paddy fields are heterocystous filamentous forms. A total of 142 isolates of heterocystous filamentous cyanobacteria were screened from 100 soil samples taken from rice paddy fields in 10 different locations across Korea, classified according to their morphological characteristics under light microscopy, and their susceptibly to fungicides examined. The collected blue-green alga were classified into a total of 14 genera, including seven genera of filamentous cyanobacteria and seven genera of nonfilamentous cyanobacteria. In particular, 142 heterocystous filamentous cyanobacteria were isolated and classified into six genera, including Anabaena, Nostoc, Calothrix, Cylindrospermum, Nodularia, Scytomena, and Tolypotrix. Yet, over 90% of the heterocystous filamentous cyanobacteria isolated from the rice paddy fields belonged to two genera: Anabaena and Nostoc. The response of 129 $N_2-fixing$ cyanobacterial isolates, 53 Anabaena and 76 Nostoc, to 10 fungicides was then investigated. The results showed that the Nostoc spp. were more tolerant of the ten tested fungicides than the Anabaena spp., and among the ten tested fungicides, benomyl showed the highest acute toxicity to Anabaena spp. and Nostoc spp. In conclusion, although benomyl is a very useful agent to control phytopathogenic fungi, the application of this fungicide to rice fields should be considered because of its toxicity to the heterocystous filamentous cyanobacteria.