하절기 수화발생이 빈번한 대청호에서 2003~2005년(3년)에 걸쳐 분자생태학적 방법의 하나인 DGGE를 이용하여 시간에 따른 미생물 군집구조의 변화를 연구하였다. 조사기간 동안 출현한 식물플랑크톤을 형태학적으로 분류한 결과 Cyanophyceae가 우점하였고, 이중에서 Microcystis, Planktothrix (Oscillatoria), Phormidium 그리고 Anabaena 속이 크게 우점하였다. 분자적 군집분석 방법으로서 16S rDNA의 DGGE profile 분석과 계통학적 분류에 의하여 우점하는 미생물 군집의 구조와 다양성을 확인하였다. Microcystis는 조사기간 동안 지속적으로 우점하였으나, Planktothrix는 2003년과 2004년 9월에, Anabaena는 2005년 9월, 그리고 Aphanizomenon은 2003년 8월에 우점하였다. DGGE와 계통분류학적 분석방법은 형태학적 분석법에 의해 얻지 못하는 새로운 정보를 제공하며, 남조류와 수생 세균사이의 상관관계를 추정할 수 있고, 그들의 유전적 다양성을 보다 자세하게 확인할 수 있다.
Kim, Young-Geel;Myung, Geum-Og;Yih, Won-Ho;Shin, Yoon-Keun
ALGAE
/
제19권2호
/
pp.145-148
/
2004
As a result of the 2-year monthly monitoring of the phytoplankton community at 3 stations in Mankyeong Estuary, Korea, we learned that cyan bacterial species of the genus Anabaena occurred at most sampling points with huge salinity differences (0.1-32.5 psu). We isolated several clones of Anabaena spp. from the monitoring stations, and screen out two euryhaline and nitrogen-fixing Anabaena clones, CB-MAL21 and CB-MAL22. The two clones were grown under various environmental gradients such as temperature (20, 30, 35 and 40$^{\circ}C$), salinity (0, 2, 5, 15 and 30psu), and $PO_4^{3-}$-P concentration (0, 1.6, 8.0, 40 and 200 ${\mu}M$M). Growth of CB-MAL21 and CB-MAL22 was measured by daily monitoring of chlorophyll fluorescence from each experimental culture for more than three serial transfers. Both the two experimental clones did not grow at 0psu. Maximal growth rates of the two clones were markedly reduced at lower $PO_4^{3-}$-P concentrations showing negligible growth at 0 and 1.6 ${\mu}M$M. However, growth of CB-MAL21 was not affected by low $NO_3^--$ concentration in culture media, showing the nitrogen-fixing ability. Maximum biomass yields of the two clones decreased dramatically at 35 and 40$^{\circ}C$. Optimal growth conditions for the two experimental clones were determined to be 20-30$^{\circ}C$, 40 ${\mu}M$M $PO_4^{3-}$-P, and wide salinity range from 5.0 to over 30psu. Best growth of CB-MAL21 was shown at (20$^{\circ}C$-15psu), which is less saline and cooler condition than those (i.e., 30$^{\circ}C$-30psu) for the best growth of CB-MAL22. The euryhaline and nitrogen-fixing CB-MAL21 strain thus can be a candidate laboratory culture for the future cyan bacterial marine biotechnology in temperate coastal waters.
Expression of the genes for carotenoid bio-synthesis (crt) is dependent on light, but little is known about the underlying mechanism of light sensing and signalling in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter, Synechocystis). In the present study, we investigated the light-induced increase in the transcript levels of Synechocystis crt genes, including phytoene synthase (crtB), phytoene desaturase (crtP), ${\zeta}$-carotene desaturase (crtQ), and ${\beta}$-carotene hydroxylase (crtR), during a darkto-light transition period. During the dark-to-light shift, the increase in the crt transcript levels was not affected by mutations in cyanobacterial photoreceptors, such as phytochromes (cph1, cph2 and cph3) and a cryptochrome-type photoreceptor (ccry), or respiratory electron transport components NDH and Cyd/CtaI. However, treatment with photosynthetic electron transport inhibitors significantly diminished the accumulation of crt gene transcripts. Therefore, the light induction of the Synechocystis crt gene expression is most likely mediated by photosynthetic electron transport rather than by cyanobacterial photoreceptors during the dark-to-light transition.
Kim, In S.;Nguyen, Giang-Huong;Kim, Sung-Youn;Lee, Jin-Wook;Yu, Hye-Weon
Environmental Engineering Research
/
제14권4호
/
pp.250-254
/
2009
Contamination of microcystins, a family of heptapeptide hepatotoxins, in eutrophic water bodies is a worldwide problem. Due to their poisoning effects on animals and humans, there is a requirement to characterize and quantify all microcystins present in a sample. As microcystins are, for most part, intracellular toxins produced by some genera of cyanobacteria, lysing cyanobacterial cells to release all microcystins is considered an important step. To date, although many cell lysis methods have been used, little work has been conducted comparing the results of those different methods. In this study, various methods for cell lysis and toxin extraction from the cell lysates were investigated, including sonication, bead beating, freeze/thaw, lyophilization and lysing with TritonX-100 surfactant. It was found that lyophilization, followed by extraction with 75% methanol, was the most effective for extracting toxins from Microcystis aeruginosa cells. Another important step prior to the analysis is removing impurities and concentrating the target analyte. For these purposes, a C18 Sep-Pak solid phase extraction cartridge was used, with the percentage of the eluent methanol also evaluated. As a result, methanol percentages higher than 75% appeared to be the best eluting solvent in terms of microcystin-leucine-arginine (MC-LR) recovery efficiency for the further chromatographic and mass spectrometric analyses.
Cyanotoxins in aquatic ecosystems have been investigated by many researchers worldwide. Cyanotoxins can be classified according to toxicity as neurotoxins (anatoxin-a, anatoxin-a(s), saxitoxins) or hepatotoxins (microcystins, nodularin, cylindrospermopsin). Microcystins are generally present within cyanobacterial cells and are released by damage to the cell membrane. Cyanotoxins have been reported to cause adverse effects and to accumulate in aquatic organisms in lakes, rivers and oceans. Possible pathways of microcystins in Lake Suwa, Japan, have been investigated from five perspectives: production, adsorption, physiochemical decomposition, bioaccumulation and biodegradation. In this study, temporal variability in microcystins in Lake Suwa were investigated over 25 years (1991~2015). In nature, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, during water treatment, the use of copper sulfate to remove algal cells causes extraction of a mess of microcystins. Cyanotoxins are removed by physical, chemical and biological methods, and the reduction of nutrients inflow is a basic method to prevent cyanobacterial bloom formation. However, this method is not effective for eutrophic lakes because nutrients are already present. The presence of a cyanotoxins can be a potential threat and therefore must be considered during water treatment. A complete understanding of the mechanism of cyanotoxins degradation in the ecosystem requires more intensive study, including a quantitative enumeration of cyanotoxin degrading microbes. This should be done in conjunction with an investigation of the microbial ecological mechanism of cyanobacteria degradation.
The growth and phosphatase (phosphomonoesterase) activity of Chroococcidiopsis culture isolated from the cryptoendoliths of the Antarctic were compared with a similar isolate from the Arizona hot desert. Such cyanobacteria living inside rocks share several features with the immobilized cells produced in the laboratory. This study has relevance because the availability of phosphorus is a key factor influencing the growth of these cyanobacteria in nature, in such unique ecological niches as the hot and cold deserts. Phosphatase activity therefore is of particular importance for these organisms if they are to survive without any other source of phosphorus availability. Also, there is paucity of knowledge regarding this aspect of study in cyanobacterial cultures from these extreme environments. The salient feature of this study shows the importance of specific pH and temperatures for growth and phosphatase activity of both cultures, although there were marked differences between the two isolates. The pH and temperature optima for growth and phosphatase activity (PMEase) of Chroococcidiopsis 1 and 2 were 9.5, $240^{\circ}C$ and 8.5, $40^{\circ}C$ respectively. The $K_m and V_max$ values of cultured Chroococcidiopsis 1 showed lower affinity of PMEase for the substrate compared to the enzyme affinity of the same organism when found within the rocks; Chroococcidiopsis 2 and Arizona rocks containing the same alga however showed similar affinity of PMEase for the substrate. An interesting observation was the similarity in response of immobilized Chroococcidiopsis 1 culture and the same organism in the Antarctic rocks to low light and low temperature stimulation of PMEase. This thermal response seems to be related to the ability of the immobilized Antarctic isolate and the rocks to either cryoprotect the PMEase or undergo a change to save the enzyme from becoming nonfunctional under low temperatures. The free cells of Chroococcidiopsis 1 culture however did not show such responses.
The present study examines the effects of 30 mg/kg butachlor on the cyanobacterial diversity of rice fields in Eastern Uttar Pradesh and Western Bihar in India. A total of 40 samples were grouped into three classes [(i) acidic, (ii) neutral, and (iii) alkaline soils], based on physicochemical and principle component analyses. Acidic soils mainly harbored Westillopsis, Trichormus, Anabaenopsis, and unicellular cyanobacteria; whereas Nostoc, Anabaena, Calothrix, Tolypothrix, and Aulosira were found in neutral and alkaline soils. Molecular characterization using 16S rRNA PCR and DGGE revealed the presence of 13 different phylotypes of cyanobacteria in these samples. Butachlor treatment of the soil samples led to the disappearance of 5 and the emergence of 2 additional phylotypes. A total of 40 DGGE bands showed significant reproducible changes upon treatment with butachlor. Phylogenetic analyses divided the phylotypes into five major clusters exhibiting interesting links with soil pH. Aulosira, Anabaena, Trichormus, and Anabaenopsis were sensitive to butachlor treatment, whereas uncultured cyanobacteria, a chroococcalean member, Westillopsis, Nostoc, Calothrix, Tolypothrix, Rivularia, Gloeotrichia, Fischerella, Leptolyngbya, and Cylindrospermum, appeared to be tolerant against butachlor at their native soil pH. Butachlor-induced inhibition of nitrogen fixation was found to be 65% (maximum) and 33% (minimum) in the soil samples of pH 9.23 and 5.20, respectively. In conclusion, low butachlor doses may prove beneficial in paddy fields having a neutral to alkaline soil pH.
Cyanobacteria are present abundantly in rice fields and are important in helping to maintain rice fields fertility through nitrogen fixation. Many rice fields soil contain a high density of cyanobactera, and over 50% of cyanobacterial genera that are in existence in rice paddy fields are heterocystous filamentous forms. A total of 142 isolates of heterocystous filamentous cyanobacteria were screened from 100 soil samples taken from rice paddy fields in 10 different locations across Korea, classified according to their morphological characteristics under light microscopy, and their susceptibly to fungicides examined. The collected blue-green alga were classified into a total of 14 genera, including seven genera of filamentous cyanobacteria and seven genera of nonfilamentous cyanobacteria. In particular, 142 heterocystous filamentous cyanobacteria were isolated and classified into six genera, including Anabaena, Nostoc, Calothrix, Cylindrospermum, Nodularia, Scytomena, and Tolypotrix. Yet, over 90% of the heterocystous filamentous cyanobacteria isolated from the rice paddy fields belonged to two genera: Anabaena and Nostoc. The response of 129 $N_2-fixing$ cyanobacterial isolates, 53 Anabaena and 76 Nostoc, to 10 fungicides was then investigated. The results showed that the Nostoc spp. were more tolerant of the ten tested fungicides than the Anabaena spp., and among the ten tested fungicides, benomyl showed the highest acute toxicity to Anabaena spp. and Nostoc spp. In conclusion, although benomyl is a very useful agent to control phytopathogenic fungi, the application of this fungicide to rice fields should be considered because of its toxicity to the heterocystous filamentous cyanobacteria.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.