• Title/Summary/Keyword: cutting tool feed system

Search Result 109, Processing Time 0.025 seconds

A Study on the Effects of Process Parameters on Dynamic Behavior Changes of Turning System (선반에서 공정변수가 가공물의 동적 거동 변화에 미치는 영향에 관한 연구)

  • Kim, Kiho;Oh, Chaeyoun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.21-28
    • /
    • 1997
  • This paper presents the influence of the process parameters on the change in dynamic behavior of a lathe turning system. With variation of feed rate, depth of cut, direction of tool motion, cutting speed and tool location along the workpiece, the dynamic characteristics of stable cutting, chatter transition and fully developed chatter regions are demonstrated. The workpiece vibration during machining is continuously measured at different tool locations along the workpiece and quantitatively analyzed. Complex linear behavior due to change of process parameter values as well as fundamental wystem nonlinearity due to change of process configuration indicated by a tool path dependence of the locations of chatter onset and disappearance are described. Finally, the structural characteristics of the turning system which can have large and nonlinear effects on system behavior are presented.

  • PDF

Prediction of Machine Tool's Energy Consumption during the Cutting Process (공작기계의 절삭공정 소비 에너지 예측기술)

  • Lee, Chan-Hong;Hwang, Jooho;Heo, Segon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.329-337
    • /
    • 2015
  • In this paper, a simulation based estimation method of energy consumption of the spindle and feed drives for the NC machine tool during the cutting process is proposed. To predict energy consumption of the feed drive system, position, velocity, acceleration and jerk of the table are analyzed based on NC data and then the power and energy are calculated considering friction force and mass of the stages. Energy consumption of the spindle is estimated based on models from acceleration motion of rotating parts, friction torque and power loss of motors. Moreover, simulation models of cutting power and energy for the material removal along the NC tool paths are proposed.

Development of Expert System for Tool Selection on Turning Operation (선삭공정에 있어서 공구선택용 전문가 시스템의 개발)

  • Paik, In-Hwan;Kwon, Hyeog-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.53-60
    • /
    • 1992
  • This paper deals with developing an Expert system for tool selection using knowledge base system approach, and its application. For the sake of building of knowledge base, the information from process through sensor, tool handbook and interview with expert are referrenced and managed. The system developed shows good application flexibility in providing the actual cutting process with the selection of tool(insert, holder) and cutting conditions(feed, speed, rake type, and so on), is found as a useful system for real-time machining process. The Expert system for tool selection is written in TURBO PROLOG ver. 2.0 for inference engine capability, and can be run in interactive mode for user friendliness. In order to apply the system developed in actual cutting process, more parameters should be considered and scrutinized, and the system should be further extended in modular basis.

  • PDF

A Study on the Influence of Cutting Conditions on the Dynamic Component of Cutting Resistance(ll) (절삭저항의 동적성분에 미치는 절삭조건의 영향에 관한 연구(II))

  • Jeon, Eun-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.2
    • /
    • pp.58-68
    • /
    • 1984
  • In this study, the static and dynamic components of cutting resistance were measured with tool dynamometer (Swiss, pieso-electric type) when S45C, A1-alloy and brass were drilled under the some variable conditions. The results obtained are as follows; 1) The dynamic components of these cutting resistance are not related to the depth of drilled hole. 2) The static and dynamic components of cutting resistance are increased in accordance with the increase of feed and drill diameter. 3) The dynamic components of thrust force are increased in accordance with the increase of spindle speed. 4) The rate of the dynamic component to the static component is 0.3 .approx. 0.5 in torque, 0.1 .approx. 0.2 in thrust force. 5) The characteristic of the tool system is affected in dynamic component of cutting resistance, and the creasted frequency and amplitude of the chip are determined by the crilled materials. 6) The maximum amplitude of the dynamic component is increased proportionally in accordance with the feed rate and the spindle speed.

  • PDF

A Study on the Wear Detection of Drill State for Prediction Monitoring System (예측감시 시스템에 의한 드릴의 마멸검출에 관한 연구)

  • 신형곤;김태영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.103-111
    • /
    • 2002
  • Out of all metal-cutting process, the hole-making process is the most widely used. It is estimated to be more than 30% of the total metal-cutting process. It is therefore desirable to monitor and detect drill wear during the hole-drilling process. One important aspect in controlling the drilling process is monitoring drill wear status. There are two systems, Basic system and Online system, to detect the drill wear. Basic system comprised of spindle rotational speed, feed rates, thrust torque and flank wear measured by tool microscope. Outline system comprised of spindle rotational speed feed rates, AE signal, flank wear area measured by computer vision, On-line monitoring system does not need to stop the process to inspect drill wear. Backpropagation neural networks (BPNs) were used for on-line detection of drill wear. The output was the drill wear state which was either usable or failure. This paper deals with an on-line drill wear monitoring system to fit the detection of the abnormal tool state.

Construction of 2-3 Dimensional Attractor System for Cutting Characteristics Evaluation of Metals (금속의 절삭성 평가를 위한 2-3차원 어트랙터 시스템의 구축)

  • Yun In Sik;Lee Jong Dae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.8-13
    • /
    • 2005
  • This study proposes the construction of 2-3 dimensional attractor system for cutting characteristics evaluation of metals. Also this paper aims to find the optimal cutting conditions of diamond turning machine by measuring surface form and roughness to perform the cutting experiment of metals, which are aluminum, with diamond tool. As well, according to change cutting conditions such as feed rate, using diamond turning machine to perform cutting processing, by measuring cutting force and surface roughness and according to cutting conditions the aluminum about cutting properties. Trajectory changes in the attractor indicated a substantial difference in attractor characteristics. Constructed 2-3 dimensional attractor system in this study can be used for cutting characteristics evaluation of metals.

A Study on the Detection of the Abnormal Tool State for Neural Network in Drilling (신경망에 의한 공구 이상상태 검출에 관한 연구)

  • Shin, Hyung-Gon;Kim, Tae-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.821-826
    • /
    • 2001
  • Out of all metal-cutting processes, the hole-making process is the most widely used. It is estimated to be more than 30% of the total metal-cutting process. It is therefore desirable to monitor and detect drill wear during the hole-drilling process. One important aspect in controlling the drilling process is monitoring drill wear status. Accordingly, this paper deals with Basic system and Online system. Basic system comprised of spindle rotational speed, feed rates, thrust, torque and flank wear measured tool microscope. Online system comprised of spindle rotational speed, feed rates, AE signal, flank wear area measured computer vision. On-line monitoring system does not need to stop the process to inspect drill wear. Backpropagation neural networks (BPNs) were used for on-line detection of drill wear. This paper deals with an on-line drill wear monitoring system to fit the detection of the abnormal tool state.

  • PDF

Research of the cutting force measuring system using feed drive system built in load cell (이송계에 부착시킨 로드셀을 이용한 절삭력 측정시스템에 관한 연구)

  • 강은구;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.595-598
    • /
    • 2000
  • This paper presents new cutting force measuring system for milling process. Usually, tool dynamometer is the most appropriate measuring tool in an analysis of cutting mechanism. High price and limited space, however, make it difficult to be in-situ system for controllable milling process. Although an alternative using AC current of servomotor has been suggested, it is unsuitable for cutting force control because of low bandwidth and noise. We suggest new cutting force measuring system, using two load cell placed between moving table and nut of ballscrew, and modelled on the system statically and dynamically. And to verify the accuracy of the proposed system, a series of carefully conducted experiments were carried out. Experiment results show that models are in reasonably good agreement with the experiment data.

  • PDF

A Study on the Modeling for Cutting Force (엔드밀 가공에서의 절삭력 모델링에 관한 연구)

  • 김성청
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.58-65
    • /
    • 2000
  • This study is concerned about the verification and the implementation of a mechanical model for the force system in end milling. The model is based on the relationship between the cutting forces and the chip thickness. The components of the model are based on the average cutting forces which are experimentally obtained. And, both instantaneous and average force system characteristics are described as a function of cut geometry and a feed rate. This model employed two specific cutting forces, instantaneous and average specific cutting force, and the models which obtained using two cutting forces were compared and analyzed. In this study, cutter deflection with respect to the center of rotation is considered, which is a major part of the tool run-outs. The effect of run-out on the cutting forces is also discussed. The relationships among the run-out parameters, cutting parameters and the resulting force system characteristics are presented. In all cases, for the down milling with a right hand helix cutter is considered.

  • PDF

A Study on Feed Rate Optimization in the Ball End-milling Process Regarding of Tool Path and Workpiece Shape (볼 엔드밀을 이용한 금형가공에 있어서 이송 속도 최적화에 대한 연구)

  • 김성윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.102-106
    • /
    • 1996
  • In the ball end-milling process of a 3-dimensional mold, it is important to select cutting conditions and tool path considering the geometrical shape of a workpiece to reduce machining time. In this study, experiments were performed to decide allowable feed rate not breaking stability of system for different geometrical shapes. It was found that downcut is more stable than upcutting in machining side wall and downward is preferable to upward in inclined part depending on the angle of the inclination and depth of cut.

  • PDF