• Title/Summary/Keyword: cutting process

Search Result 2,294, Processing Time 0.026 seconds

Tool Deflection Estimation in Micro Flat End-milling Using Finite Element Method (유한요소법을 이용한 마이크로 평엔드밀링에서의 공구변형 예측)

  • Lim, Jeong-Su;Cho, Hee-Ju;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.498-503
    • /
    • 2010
  • The main purpose of this study strongly concerned micro machining error estimation by using FEM analysis of tool deflection shapes in micro flat end-milling process. For the precision micro flat end-milling process, analysis of micro cutting errors is mandatory. In general, tool deflection is a major factor which causes cutting error and limits realization of the high-precision cutting process. Especially, in micro end-milling process, micro tool deflection generates very serious problems in contrast to macro tool deflection. Methods which deal with compensation of cutting error by tool deflection in macro end-milling process have been studied plentifully but, few researches transact with micro scaled cutting tool deflection in micro cutting process. Therefore, the trend of micro tool deflection was estimated by using FEM analysis in this paper. Cutting forces were acquired by micro dynamometer and these were utilized in FEM analysis. In order to verify FEM analysis results, micro machining processes were carried out and real machined profiles were compared with FEM results. Finally through the proposed approach well suited FEM results were obtained.

A Study on the Characteristics Analysis of Cutting Fluid Aerosol Using Dual-PDA System - for Turning Process (Dual-PDA를 이용한 절삭유 에어로졸 특성분석에 관한 연구(I) -선삭공정을 중심으로)

  • Jeong, J.Y.;Hwang, D.C.;Hong, G.B.;Woo, C.K.;Hwang, J.
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.10-17
    • /
    • 2005
  • The proposed research has been performed to know the characteristics of cutting fluid aerosol formation using Dual-PDA system in machining process. The cutting fluid aerosol size and concentration is common attributes that quantify the environmental intrusiveness or air quality contamination. The atomized cutting fluid aerosols can be affected to human health risk such as lung cancer and skin irritations. Even though cutting fluid can be improved the machining quality and productivity in a carefully. its use must be controlled and optimized carefully. This experimental works using Dual-PDA were performed to analyze the cutting fluid aerosol behaviors and characteristics in turning process using precise aerosol particle measuring system. The obtained experimental results profovide basic knowledge to develop the environmentally conscious machining process. This results cail be provided as a basis to estimate and control the hazardous cutting fluid aerosol in machining process.

  • PDF

A Basic Study on Burr Formation of Micro Cutting Process with the Ferrous Metal at tow Temperature (철계 금속 마이크로 절삭 가공시 저온 환경에서의 버 발생에 관한 기초연구)

  • Kim, G.H.;Kim, D.J.;Sohn, J.I.;Yoon, G.S.;Heo, Y.M.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.166-171
    • /
    • 2009
  • In this paper, a basic study on micro cutting process with SM20C at low temperature environment was performed. In macro cutting fields, the cryogenic cutting process has been applied to cut the refractory metal but, the serious problem may be generated in micro cutting fields by the cryogenic environment. However, if the proper low temperature is applied to micro cutting area, the cooling effect of cutting heat is expected. Such effect can make the reduction of tool wear and burr formation. For verifying this possibility, the micro cutting experiment at low temperature was performed and SEM images were analyzed.

The Prediction of Cutting Force and Surface Topography by Dynamic Force Model in End Milling (엔드밀 가공시 동적 절삭력 모델에 의한 절삭력 및 표면형상 예측)

  • 이기용;강명창;김정석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.38-45
    • /
    • 1997
  • A new dynamic model for the cutting process inb the end milling process is developed. This model, which describes the dynamic response of the end mill, the chip load geometry including tool runout, the dependence of the cutting forces on the chip load, is used to predict the dynamic cutting force during the end milling process. In order to predict accurately cutting forces and tool vibration, the model which uses instantaneous specific cutting force, inclueds both regenerative effect and penetration effect, The model is verified through comparisons of model predicted cutting force with measured cutting force obtained from machining experiments.

  • PDF

Effect of Cooling Method on Surface Roughness in Turning (선삭가공에서 표면 거칠기에 미치는 냉각방법의 영향)

  • Kim, Yeong-Duck
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.87-93
    • /
    • 2011
  • CNC lathe machining has been widely used for parts machining of vehicles, aircraft, ships, electronics, etc. because cost savings for shortening processing time and increasing productivity are great. In this study, the purpose is to investigate the effect of cooling methods such as oil mist, water-soluble cutting oils on the workpiece surface roughness with the cutting speed, cutting depth, tool nose radius and feed rate of CNC lathe machine as a parameter in the cutting process of the aluminum alloy 2024 which is used a lot recently on aircraft parts. It is found that oil mist is coolant and water-soluble cooled by cutting the experimental conditions, cutting speed and cutting depth without effecting the surface roughness value was constant.

Prediction of Cutting Forces in High Speed End Milling (고속 엔드밀 가공에서의 절삭력 예측)

  • Jung, Sung-Chan;Kim, Kug Weon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.21-27
    • /
    • 2005
  • Recently researches for high speed machining have been actively performed. Few analytical studies, however, have been published. In this paper, a model of cutting forces is analytically studied to predict cutting characteristics in end mill process, especially considering both feed rate and spindle speed. The developed cutting model is based on Oxley's machining theory, which predicts the cutting forces from input data of workpiece material properties, tool geometry and cutting conditions. Experimental verification has been performed to verify the predictive cutting force model using tool dynamometer. It has been found that the simulation results substantially agree with experimental results.

  • PDF

A Study on the Correlation between Machinability and the Cutting Condition in Machining Aluminum Alloy (알루미늄합금 절삭시 절삭성과 절삭조건의 상관성에 관한 연구)

  • Oh, Seok-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.56-62
    • /
    • 2004
  • Using NC or CNC machine tool, the unmanned automatic production system has been growing recently in the manufacturing field. Thus it is important to find out the machinability of cutting force, tool wear and surface roughness during the cutting process. It is necessary to find how to estimate the machinability for the effective cutting condition because of problem about cutting power, tool wear, cutting time and precision. This study was planned to discover the relations of tool wear by variations of roughness and derived to correlate the wear with the surface roughness on the cutting parameter(cutting force, flank wear, surface roughness, friction angle, shear angle, slenderness ratio) when the aluminum alloy was cut in turning.

  • PDF

Development of Ultra-precision Ultrasonic Surface Machining Device Using Cyclic Elliptical Cutting Motion of a Couple of Piezoelectric Material (압전소자의 미세회전운동을 이용한 초정밀 초음파 표면가공기 개발)

  • Kim, Gi-Dae;Loh, Byung-Gook;Kim, Jeong-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.29-35
    • /
    • 2006
  • Various types of elliptical motions are generated by PZT mechanism which is composed of two parallel piezoelectric actuators. Elliptical vibration cutting(EVC) is obtained by attaching single crystal diamond cutting tool to the mechanism, and V-grooving for Brass and Aluminum is carried out by applying the EVC. It is experimentally observed that the cutting force in the process of the EVC reduces compared to the ordinary non-vibration cutting, which is due to the decrease of undeformed chip thickness and frictional force between the tool and chip. Ultrasonic elliptical vibration cutting(UEVC) suppresses burr formation and decreases cutting force still more, so UEVC makes it possible to enhance the shape accuracy of machined surface.

  • PDF

Correlation analysis between cutting conditions and cylindricity in MQL turning (MQL 선삭가공에서 절삭조건과 원통도의 상관관계 분석)

  • Shin, Sung-Woo;Hwang, Young-Kug;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.74-81
    • /
    • 2009
  • At present, industries and researchers are looking for ways to reduce the use of lubricants because of ecological and economical reasons. Therefore, metal cutting is to move toward dry cutting or semi-dry cutting. One of the technologies is known as MQL machining. This paper presents an investigation into MQL machining with the objective of evaluating cylindricity and cooling effect for the turning process of SM45C. To reach this goal, cylindrical-outer-diameter turning experiments are carried out according to cutting conditions with fluid, MQL and dry machining methods. A cutting force, tool-shank temperature and cylindricity of workpiece are measured and analyzed. The correlation between cutting conditions and cylindricity are evaluated according to cooling lubricant environments.

  • PDF