• 제목/요약/키워드: cutting method

검색결과 2,034건 처리시간 0.03초

새로운 다이아몬드 와이어 쏘 절단 기술 개발에 관한 실험적 검증 (An Experimental Verification on the Development of an Innovative Diamond Wire Saw Cutting Technology)

  • 박종협;주백석
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.83-90
    • /
    • 2018
  • This paper introduces a innovative diamond wire saw cutting technology and its experimental verification that can be utilized for cutting heavy structures. While conventional diamond wire saw cutting technologies such as water cooled cutting method and dry cutting method cause severe environmental problems due to generating massive concrete sludge or dust scattering, the proposed method can eliminate those problems considerably. Through extensive experiments using heavy structure test bed and real bridge pier structure, comprehensive analysis and comparative evaluation about various cutting methods were performed. As a result, the innovative diamond wire saw cutting method could achieve a similar cutting and cooling performance to the water cooled cutting method without generating concrete sludge and it showed an improved cutting and cooling performance to the dry cutting method without dust scattering. Consequently it is confirmed that the suggested cutting technology can be a promising environment-friendly alternative in the field of heavy structure dismantling.

주축 모터 동력을 이용한 절삭력 예측 (Cutting Force Estimation Using Spindle Motor Power)

  • 최영준;김기대;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1088-1094
    • /
    • 1997
  • An indirect cutting torque and cutting force estimation method is presented. This method uses a time-domain model between the spindle motor power, which calculated form measured spindle motor current and voltage. Spindle motor power is linear with cutting torque in this model. The cutting force is proportional to the cutting torque. Using trial cut, parameters are determined. Static sensitivity is suitable for various cutting conditions. The presented method is verified under several cutting tests on the CNC horizontal machining center.

  • PDF

H-beam 로봇 절단용 3차원 시뮬레이터의 개발과 이를 이용한 절단 최적화에 관한 연구 (A Study on Development of 3-D Simulator for H-Beam Robot Cutting and Optimization of Cutting Using the Simulator)

  • 박주용;김용욱
    • Journal of Welding and Joining
    • /
    • 제30권4호
    • /
    • pp.44-48
    • /
    • 2012
  • H-beam used for stiffening the upper structure of ocean plant is cut in the various shapes. The cutting process of the H-beam is done manually and requires a long time and high cost. Therefore, automation of H-beam cutting is an important task. This research aims to develop a 3-D simulator to build the automatic H-beam cutting system and to determine the optimal cutting method. The automatic H-beam cutting system composes of 6 robots including 2 cutting robots hang to a crane and 1 conveyer. The appropriate system layout for covering the various sizes and types of H-beam was tested and determined using the simulator. The H-beam cutting system uses a hybrid type of plasma and gas cutting because of special cutting shapes of H-beam. The cutting area of each cutting method should be properly divided according to the size and shape of H-beam to shorten the total cutting time. Additionally the collision between a robot and a robot or a robot and H-beam should be avoided. The optimal cutting method for the shortest cutting time without the collision could be found for the various cutting conditions by use of the simulator. 2 simulation samples shows the availability of the simulator to find the optimal cutting method.

An experimental study on the development and verification of NCC(new concrete cutting) system

  • Park, Jong-Hyup;Han, Jong-Wook
    • Structural Engineering and Mechanics
    • /
    • 제65권2호
    • /
    • pp.203-211
    • /
    • 2018
  • This paper introduces the development process of NCC(New Concrete Cutting) system and analyzes first verification test. Based on the first verification test results, some problems of NCC system have been newly modified. We carry out the second verification test. We tried to verify cutting performance and dust control efficiency of NCC system through the cutting test of concrete bridge piers. In particular, this verification test strives to solve the problem of concrete dust, which is the biggest problem of dry cutting method. The remaining dust problems in cutting section tried to solve through this verification test. This verification test of the NCC system shows that the dust problem of dry cutting method is closely controlled and solved. In conclusion, the proposed NCC method is superior to the dry cutting method in all aspects, including cutting performance, dust vacuum efficiency and cooling effect. The proposed NCC system is believed to be able to provide eco-friendly cutting technology to various industries, such as the removal of the SOC structures and the dismantling of nuclear plants, which have recently become a hot issue in the field of concrete cutting.

3차원 기로틴 3단계 자재절단 방법에 관한 연구 (A study on the 3-stage 3-dimensional guillotine cutting-stock problem)

  • 김상열;박순달
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.276-279
    • /
    • 1996
  • This paper deals with the method providing an exact solution to the 3-dimensional guillotine cutting stock problem. We suggest a 3-stage sutting method using the property that cubic material has to be cut into 2-dimensional planes firstly. This method requires more stocks that the general guillotine cutting methods but can save work force. By using the 1-dimensional dynamic programming, we reduce the computational time and the memory requirement in the 3-stage guillotine cutting method.

  • PDF

진동절삭법을 이용한 절삭깊이의 최소화 (The Minimizing of Cutting Depth using Vibration Cutting)

  • 손성민;안중환
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.38-45
    • /
    • 2004
  • This paper discusses the minimum cutting thickness with a continuous chip in sub-micrometer order precision diamond cutting. An ultra precision cutting model is proposed, in which the tool edge radius and the friction coefficient are the principal factors determining the minimum cutting thickness. The experimental results verify the proposed model and provide various supporting evidence. In order to reduce the minimum cutting thickness a vibration cutting method is applied, and the effects are investigated through a series of experiments under the same conditions as conventional cutting method.

황칠나무 삽목번식에 관한 연구 (Cutting Propagation of Dendropanax morbifera $L_{EV}$.)

  • 최성규
    • 한국약용작물학회지
    • /
    • 제6권4호
    • /
    • pp.251-257
    • /
    • 1998
  • 우리나라 황칠나무의 자생지인 전남 완도지방에서 황칠나무의 재배시 삽목번식법을 체계적으로 확립 하고자 시험을 실시한 결과는 다음과 같다. 1. 삽목의 종류로는 숙지삽과 녹지삽이 가능하였으며, 숙지삽 보다는 녹지삽이 캘러스형성이 양호하고 발근율이 높은 경향이었다. 삽목시기는 숙지삽은 2월${\sim}$3월 중순경 실시하고, 녹지삽은 2월${\sim}$3월경 실시하는 것이 발근율이 높아 적당한 시기로 판단된다. 2. 황칠나무의 경삽시 삽식형태는 관삽(normalcutting)보다는 단자삽(earthen-ball cutting) 이 캘러스 형성율이 높고 발근이 양호하였다. 3. 상토는 통기성과 보수성이 양호한 사양토가 발근에 효과적이었으며, 경제성이 있을 것으로 생각되어 적당한 상토로 생각된다. 4. 식물생장조절제는 IBA(indole butyric acid)를 100ppm처리할 경우 캘러스 형성율이 높고 발근이 촉진되는 경향이었다.

  • PDF

엔드밀 가공에서 형상 정밀도 향상을 위한 절삭 조건 선정 (Cutting Condition Selection for Geometrical Accuracy Improvement in End Milling)

  • 류시형;최덕기;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1784-1788
    • /
    • 2003
  • For the improvement of geometrical accuracy in end milling, cutting method and cutting condition selection are investigated in this paper. As machining processes are composed of several steps such as roughing, semi-finishing. and finishing, cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting. The effects of tool teeth numbers, tool geometry, and cutting conditions on the form error are analyzed. Using the from error prediction method from tool deflection, cutting condition for geometrical accuracy improvement is discussed. The characteristics and the difference of generated surface shape in up and down milling are dealt with and over-cut free condition in up milling is presented. The form error reduction method by alternating up and down milling is also suggested. The effectiveness of the presented method is examined from a set of cutting tests under various cutting conditions. This research contributes to cutting process optimization for the geometrical accuracy improvement in die and mold manufacture.

  • PDF

반응표면법을 이용한 구성방정식의 온도계수 결정과 절삭력 예측 (Determination of the Temperature Coefficient of the Constitutive Equation using the Response-Surface Method to Predict the Cutting Force)

  • 구병문;김태호;박정수
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.9-18
    • /
    • 2021
  • The cutting force in a cutting simulation is determined by the cutting conditions, such as cutting speed, feed rate, and depth of cut. The cutting force changes, depending on the material and cutting conditions, and is affected by the heat generated during cutting. The physical properties for predicting the cutting force use constitutive equations as functions of the hardening term, rate-hardening term, and thermal-softening term. To accurately predict the thermal properties, it is necessary to accurately predict the thermal-softening coefficient. In this study, the thermal-softening coefficient was determined, and the cutting force was predicted, using the response-surface method with the cutting conditions and the thermal-softening coefficient as factors.

유한유쇼법을 이용한 미소절삭기구의 절삭인자 규명에 관한 연구 (A study on the effect of cutting parameters of micro metal cutting mechanism using finite element method)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.206-215
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting, especially micro metal cutting. This paper introduces some effects, such as constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angle and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool. Under the usual plane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and tool rake angles. In this analysis, cutting speed, cutting depth set to 8m/sec, 0.02mm, respectively. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF