• Title/Summary/Keyword: cutting force parameter

Search Result 69, Processing Time 0.028 seconds

An Evaluation of Machining Characteristics in Micro-scale Milling Process by Finite Element Analysis and Machining Experiment (유한요소해석과 가공실험을 통한 마이크로 밀링가공의 가공특성평가)

  • Ku, Min-Su;Kim, Jeong-Suk;Kim, Pyeoung-Ho;Park, Jin-Hyo;Kang, Ik-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.101-107
    • /
    • 2011
  • Analytical solution of micro-scale milling process is presented in order to suggest available machining conditions. The size effect should be considered to determine cutting characteristics in micro-scale cutting. The feed per tooth is the most dominant cutting parameter related to the size effect in micro-scale milling process. In order to determine the feed per tooth at which chips can be formed, the finite element method is used. The finite element method is employed by utilizing the Johnson-Cook (JC) model as a constitutive model of work material flow stress. Machining experiments are performed to validate the simulation results by using a micro-machining stage. The validation is conducted by observing cutting force signals from a cutting tool and the conditions of the machined surface of the workpiece.

The Characteristics of High-Speed Machining of Aluminum Wall Using End-Mill (엔드밀을 이용한 알루미늄 측벽 형상의 고속가공 특성)

  • 이우영;최성주;김흥배;손일복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.912-916
    • /
    • 2000
  • The term ‘High Speed Machining’has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry fur the machining of light alloys, notably aluminium. In recent you, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. And the end mill is an important tool in the milling process. A typical examples for the end mill is the milling of pocket and slot in which a lot of material is removed from the workpiece. Therefore the proper selection of cutting parameter fur end milling is one of the important factors affecting the cutting cost. The one of the advantages of HSM is cutting thin-walled part of light alloy like Al(thinkness about 0.1mm). In this paper, firstly, we study characteristics of HSM, and then, we choose the optimal parameters(cutting forces) to cut thin-walled Al part by experiment.

  • PDF

Changes in the Chemical Composition and Textural Properties of Korean Cabbage during Salting (배추의 염장과정 중 성분변화와 조직감의 변화)

  • 이희섭;이철호;이귀주
    • Korean journal of food and cookery science
    • /
    • v.3 no.1
    • /
    • pp.64-70
    • /
    • 1987
  • The effects of salting on the compositional and textural changes of Korean cabbage were studied. The optimum brining conditions were established ana the dietary fiber composition, mineral contents and moisture content of raw and salted Korean cabbage were determined. The cutting test of cabbage was made by Rheometer and the brittleness and chewiness were evaluated organoleptically. The optimum condition for brining was at 20% NaCl concentration for 6 hours. In the compositional changes of Korean cabbage by salting at 20% NaCl solution for one month, the content of hot water soluble pectin (HW-P) increased from 43.6% to 55.9% and that of hexametaphosphate soluble pectin (HM-P) decreased from 35.9% to 29.5%. The contents of cellulose and hemicellulose increased, but that of lignin decreased slightly by salting, showing no significant differences in raw and salted cabbage. The content of Na increased significantly and those of Ca, Mg and K decreased by salting. And also moisture content decreased from 91% to 79%. In the textural changes of Korean cabbage by salting, the maximum cutting force and cutting work increased five times and two and half times respectively. And organoleptic test did show significant increase in chewiness and decrease in brittleness. The maximum cutting force by Rheometer was well correlated with the sensory parameters. The results taken together showed that the changes in textural properties during salting are relevant to the changes in pectic substances, moisture content and mineral contents, but relatively irrelevant to the changes in cellulose, hemi-cellulose ana lignin. And it is considered that the maximum cutting force by cutting test is good means for the expression of texture of Korean cabbage.

  • PDF

Spindle Design Technology for High Speed Machine Tools

  • Lee, Chan-Hong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.109-115
    • /
    • 2000
  • The spindle unit is core parts in high precision machine tools. Diverse static, dynamic and thermal charateristics of spindle unit are needed for special purpose of machine tools. Compromise between those charateristics will be done in concept design phase. High static stiffness at spindle nose may be very important performance for heavy cutting work. High dynamic stiffness is also useful to high precision and high speed machine tools. Improvement of thermal charateristics in spindle lead to high reliability of positioning accuracy. For high speed spindle structure, the design parameter such as, bearing span, diameter, bearing type and arrangement, preload, cooling and lubrication method should be in harmony.

  • PDF

Chaotic analysis of tool wear using multi-sensor signal in end-milling process (엔드밀가공시 복합계측 신호를 이용한 공구 마멸의 카오스적 해석)

  • Kim, J.S.;Kang, M.C.;Ku, S.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.93-101
    • /
    • 1997
  • Ever since the nonlinearity of machine tool dynamics was established, researchers attempted to make use of this fact to devise better monitoring, diagnostics and control system, which were hitherto based on linear models. Theory of chaos which explains many nonlinear phenomena comes handy for furthering the analysis using nonlinear model. In this study, measuring system will be constructed using multi-sensor (Tool Dynamometer, Acoustic Emission) in end milling process. Then, it will be verified that cutting force is low-dimensional chaos by calculating Lyapunov exponents. Fractal dimension, embedding dimension. And it will be investigated that the relation between characteristic parameter calculated from sensor signal and tool wear.

  • PDF

The Parameter Determination of a Scribing Machine for Semiconductor Wafer (반도체 웨이퍼용 스크라이빙 머신의 파라메터 결정)

  • 차영엽;최범식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.218-225
    • /
    • 2003
  • The general dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. However, inferior goods may be made under the influence of several parameters in dicing process such as blade, wafer, cutting water and cutting conditions. Moreover we can not apply this dicing method to a GaN wafer, because the GaN wafer is harder than other wafers such as SiO$_2$, GaAs, GaAsP, and AlGaAs. In order to overcome this problem, development of a new dicing process and determination of dicing parameters are necessary. This paper describes determination of several parameters - scribing depth, scribing force, scriber inclined angle, scribing speed, and factor for scriber replacement - for a new dicing machine using a scriber.

The Parameter Determination of Scribing Machine for Semiconductor Wafer (반도체 웨이퍼용 스크라이빙 머신의 파라메터 결정)

  • 차영엽;최범식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.164-167
    • /
    • 2002
  • The general dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. But inferior goods are made under the influence of several parameters in dicing process such as blade, wafer, cutting water and cutting conditions. Moreover we can not applicable this dicing method to GaN wafer, because the GaN wafer is harder than the other wafer such as SiO$_2$, GaAs, CaAsP, and AlCaAs. In order to overcome this problem, development of a new dicing process and determination of dicing parameters are necessary. This paper describes determination of several parameters - scribing depth, scribing force, scriber inclined angle, scribing speed, and factor for scriber replacement - for a new dicing machine using scriber.

  • PDF

A Study on the Tool Fracture Detection Algorithm Using System Identification (시스템인식을 이용한 공구파손검출 알고리듬에 관한 연구)

  • Sa, Seung-Yun;Yu, Eun-Lee;Ryu, Bong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.988-994
    • /
    • 1997
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There have been many studies to monitor and predict the system, but they have mainly focused upon measuring cutting force, and current of motor spindle, and upon using acoustic sensor, etc. In this study, digital image of time series sequence was acquired by taking advantage of optical technique. Mean square error was obtained from it and was available for useful observation data. The parameter was estimated using PAA(parameter adaptation algorithm) from observation data. AR(auto regressive) model was selected for system model and fifth order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter. Through the proceedings, it was found that there was a system stability.

Admittance Model-Based Nanodynamic Control of Diamond Turning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 초정밀진동제어)

  • Jeong, Sanghwa;Kim, Sangsuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.154-160
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface cnotours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated dapth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in additn to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamoneter. Based on the parameter estimation of cutting dynamics and the admitance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

A study on the measurement conditions for measuring the toughness of bread (식빵의 굳기 측정을 위한 측정 조건에 관한 연구)

  • Shin, Sun-Hwa;Choi, Won-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.247-250
    • /
    • 2022
  • The maximum cutting force (MCF) was measured and analyzed under various conditions using a Miller/Hoseney toughness rig to measure the toughness of bread due to aging. In the bread crust, the MCF increased significantly as the cross-head speed increased, and different type of significant difference between the samples were observed under some measurement conditions (p<0.05). Within the bread, the MCF increased significantly as the cross-head speed increased at the same penetration ratio, and the significant differences between the samples did not change even if the cross-head speed changed regardless of the penetration ratio. In conclusion, when using this method to measure the toughness of bread (apart from the crust), the MCF varied with the changing measurement conditions; however, the significant difference between the samples did not change. Thus, MCF can be considered a useful and reliable parameter when measuring the difference between the samples.