• Title/Summary/Keyword: cutting fluid

Search Result 195, Processing Time 0.023 seconds

A Study on Waste Reduction of Water Soluble Cutting Fluids by UV-free Reflecting Reactor (절삭공정에서 UV 자유반사 반응조를 사용한 폐절삭유의 감량화 연구)

  • Jung, Suk-Ho;Hwang, Hyeon-Uk;Hong, Sang-Yeon;Kim, Hyun-Su;Saleem, Khan Muhamad;Kim, Ji-Hoon;Kim, Young-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.609-615
    • /
    • 2008
  • In this study, the design of UV-free reflecting reactor was studied to enhance the cutting fluid life for cutting machine. And also, the stability of cutting fluid with addition of biocide in cutting fluid and without biocide was compared with respect to the cutting fluid concentration, pH changes and microorganisms. Low number of microorganism was observed in the cutting fluid after UV-free reflecting treatment as compare to the cutting fluid which was added biocide and just cutting fluid alone. PH of the cutting fluid after UV-free reflecting treatment was about 9$\sim$8.5 while others were observed considerably low. The oil contents of cutting fluid which was added biocied and pure cutting fluid were almost degraded with the passage of time. However, in case of UV-free reflecting reactor, 4$\sim$3.5 Brix oil contents were observed in the cutting fluid.

A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in fuming Operation(1) (환경 친화적 기계가공 기술에 관한 연구 선삭가공시 회전분리기구에 의한 절삭유 미립화와 환경영향(I))

  • Hwang, Joon;Chung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.73-79
    • /
    • 2002
  • This paper presents the experimental results to verify the environmental consciousness with economic balances due to cutting fluid behaviors, effectiveness in machining process. Even though cutting fluid improves the Productivity through the cooling, lubricating effects, its environmental impact is also increased according to the cutting fluid usage. The primary mechanism considered in this study is the spin-off motion of fluids away from rotating workpiece. In this study some parameters arc adopted to analyze the productivity(tool wear), environmental impact(mist diffusion rate). The results present talc criteria for the resonable cutting fluid usage quantitative1y to develop the environmentally conscious machining process.

A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in fuming Operation(II) (환경 친화적 기계가공 기술에 관한 연구 선삭가공시 회전분리기구에 의한 절삭유 미립화와 환경영향(II))

  • Hwnag, Joon;Chung, Eui-Sik;Hwnag, Duk-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.50-57
    • /
    • 2003
  • This paper presents the experimental results to verify the atomization characteristics and environmental impact of cutting fluid. Even though cutting fluid improves the productivity through the cooling, Lubricating effects, environmental impact due to cutting fluid usage is also increased on factory shop floor Cutting fluid's aerosol via atomization process can be affected human health risk such as lung cancer and skin diseases. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working tone under typical operational conditions. The aerosol concentration also exceeds NIOSH regulations. This research can be provided a basis of environmental impact analysis fur environmental consciousness.

A Study on the Characteristics Analysis of Cutting Fluid Aerosol Using Dual-PDA System(II) - for Cutting Fluid Aerosol Prediction in Turning Process (Dual-PDA를 이용한 절삭유 에어로졸 특성분석에 관한 연구(II) - 선삭공정의 절삭유 에어로졸 예측)

  • Chung, E.S.;Hwang, D.C.;Woo, C.K.;Hwang, J.
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.32-40
    • /
    • 2005
  • This paper presents the analytical approaches to predict cutting fluid aerosol formation characteristics in machining process. The prediction model which is based on the rotary atomization theory analyzes aerosol behaviors in terms of size and concentration. Experiments were tarried out to verify the aerosol formation prediction model under various operational conditions. The experimental results which are obtained by Dual-PDA measurement show resonable agreement with prediction results of aerosol concentration. This study can be provided as a basis to estimate and control the hazardous cutting fluid aerosol in machining process in view of environmental consciousness.

  • PDF

Effects of Filtering System of Cutting Fluid on the Surface Quality of Plasma Etching Electrode (절삭유의 필터링 시스템이 플라즈마 에칭 전극의 표면 품질에 미치는 영향)

  • Lee, Eun Young;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.46-50
    • /
    • 2018
  • The purpose of this study is to analyze effects of filtering system of cutting fluid which is used for machining silicon electrode. For the research, different sizes of filter clothes are applied to check grain size of sludge of cutting fluid. Surface roughness of machined workpiece, depth of damage inside of silicon electrode, and suspended solids of cutting fluid are experimented and analyzed. From these experiments, it is verified that filtering system of cutting fluid is very important factor for machining. Results of this study can affect various benefits to the semiconductor industry for better productivity and better atmospheric pollution in workplace.

Atomization Characteristics of Cutting Fluids (절삭유의 미립화 특성)

  • Hwang, Joon;Chung, Eui-Sik;Joung, Jin-Yel;Hwang, Duck-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.943-946
    • /
    • 2002
  • This paper presents atomization characteristics of cutting fluids. To analyze the behavior characteristics of cutting fluid, analytical approach and experimental measurement were performed to predict the aerosol size, velocity and concentration due to cutting fluid atomization mechanism in machining operation. The established analytical model which is based on atomization theory analyzes the cutting fluid motion and aerosol generation in machining process. The predictive models can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.

  • PDF

A Study on the Influences of the cutting fluid to the Environment (절삭가공시 절삭유제가 환경에 미치는 영향에 관한 연구)

  • Choi, Myung-Soo;Jung, Sun-Hwan;No, Seung-Hoon;Choi, Hwan;Choi, Sung-Dae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.939-943
    • /
    • 2000
  • This study was carried out to examine the influences of the cutting fluid to the environment of the small and he medium industries in the Kumi complex. The result of this study shows that the cutting fluid includes a few of hazardrous materials such as phenol and benzen. Therefore a new cutting technology without cutting fluid should be strongly recommended in the nearest future.

  • PDF

A Counterplan and Environmental damage of Cutting fluids (가공유제의 환경피해와 대책)

  • 김남경;김해지;정종달
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.223-238
    • /
    • 2002
  • This paper presented on an environment estimation of cutting fluid which is a mouse model of acute bacterial rhinosinusitis using cutting fluid in grinding and cutting. Above results will be remarked the necessity of friendly environmental cutting skill when it had used in workshop. The results of a mouse experimental using cutting fluid showed that it are occurred to the respiratory organs sickness. Also cutting fluid are occurred to hurtfulness a person when it used to grinding and cutting in workshop. Also, the results of grinding experiments in avitation materials showed that surface roughness are superior to more emulsion type oil than vegetable type oil according to increase of the depth of cut. Grinding force are similar to both emulsion type oil and vegetable type oil.

  • PDF

Environmentally Conscious Machining Technology of Aircraft Material(12Cr steel) (항공기소재(고크롬강)의 환경친화적 가공기술)

  • 강명창;김정석;이득우;황윤호;송준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1051-1054
    • /
    • 2002
  • Environmentally conscious machining and technology have been taking more and more important position in machining process. Since cutting fluid has some impact on environment, many researches are being carried out to minimize the use of cutting fluid. It can be Increased the environmental pollution through not using coolant any more or minimizing it. In this study, the cooling effects of cutting methods using the compressed cold air, dry cutting and cutting fluid will investigate in the blade machining. In order to examine the characteristics of cutting and tool in the environmentally conscious machining, this work investigates experimentally the degree of tool wear, cutting force and characteristics of surface roughness in relation to machining conditions and cooling methods.

  • PDF

A Study on the Cutting Fluid Effectiveness in Mechanical and Thermal Terms Simultaneously for Environmentally Conscious Machining (환경친화적 기계가공을 위한 기계적$\cdot$열적측면에서의 절삭유제 사용효과에 관한 연구)

  • Mo, Yong-Gu;Hwang, Jun;Jung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.90-97
    • /
    • 2000
  • This paper presents a methodology to analyze the cutting fluid effectiveness in mechanical and thermal terms simultaneously using finite element method and experimental work. Cutting fluid plays many roles in metal cutting process. Mechanically-thermally coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, it can be explained that the critical behavior of cutting fluids will be able to apply optimal environmentally conscious machining process.

  • PDF