• Title/Summary/Keyword: cutting fluid

Search Result 195, Processing Time 0.028 seconds

A Study on the Cooling Performance of Cutting Oil of Inclined Thermosyphon (경사 열사이폰의 절삭유 냉각성능에 관한 연구)

  • 이정한;이기백;조동현;이종선
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.38-44
    • /
    • 2002
  • An experimental investigation was performed to observe the cooling performance of cutting oil and the effect of inclination angle on the transport behaviour of a inclined thermosyphons with low integral-fins. Relatively high rates of heat transfer have been achieved by operating this manner. Water has been used as the working fluid. The inclimation angle of thermoryphon and the ratio of Reynolds number of cooling to hot fluid have been used as the experimental parameters. Heat transfer coefficients at the condenser and the evaporator are estimated from experimental results. The experimental results have been assessed and compared with existing theory. Good agreement with the theory of Yiwei has been found. The maximum heat flow rate in the thermosyphon proved to depend upon the inclination angle.

A Study on Design of High Pressure Injection Nozzle for Avoiding Chip Curling (칩 말림 방지를 위한 고압 분사 노즐 설계에 관한 연구)

  • Yi, Chung-Seob;Yun, Ji-Hun;Jeong, In-Guk;Song, Chul-Ki;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.793-798
    • /
    • 2011
  • In this study, it was grasped to the flow characteristics of cutting fluid injected by nozzle installed in high pressure holder for avoiding chip curling occurred during machining process. And for avoiding chip curling, the possibility of elimination under various chip conditions was checked. Consequently, the highest discharging pressure and velocity was shown in 150 of nozzle inflow angle. Also as nozzle outlet diameter is small, the pressure and velocity of injected flow are high. Moreover, It could be confirmed that width and thickness of chip have no direct effect on chip elimination and it is achieved by torque generated by injected cutting fluid.

Evaluation of the Economics of High Speed Machining Considering Environmental Effects (환경영향을 고려한 고속절삭가공의 경제성 평가)

  • Chang, Yoonsang;Kim, Sun-Tae
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.182-189
    • /
    • 2006
  • In this study, high speed machining is evaluated with regard to economical and environmental effects. Considering environmental loads, machining costs are analyzed with the mathematical models of machining economics and cutting fluid loss. Data from the tool life experiments of high speed milling and turning are used for the analysis. The analysis of high speed milling shows that the machining cost decreases as increasing the cutting speed. In turning process, the cooling method using cutting fluid shows the minimum machining cost. Considering both machining and environmental costs, cooling method using cold air is superior to other methods.

  • PDF

Study on the transient flow induced by the windbreak transition regions in a railway subject to crosswinds

  • Zheng-Wei, Chen;Syeda Anam, Hashmi;Tang-Hong, Liu;Wen-Hui, Li;Zhuang, Sun;Dong-Run, Liu;Hassan, Hemida;Hong-Kang, Liu
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.309-322
    • /
    • 2022
  • Due to the complex terrain around high-speed railways, the windbreaks were established along different landforms, resulting in irregular windbreak transition regions between different subgrade infrastructures (flat ground, cutting, embankment, etc). In this paper, the effect of a windbreak transition on the wind flow around railways subjected to crosswinds was studied. Wind tunnel testing was conducted to study the wind speed change around a windbreak transition on flat ground with a uniform wind speed inflow, and the collected data were used to validate a numerical simulation based on a detached eddy simulation method. The validated numerical method was then used to investigate the effect of the windbreak transition from the flat ground to cutting (the "cutting" is a railway subgrade type formed by digging down from the original ground) for three different wind incidence angles of 90°, 75°, and 105°. The deterioration mechanism of the flow fields and the reasons behind the occurrence of the peak wind velocities were explained in detail. The results showed that for the windbreak transition on flat ground, the impact was small. For the transition from the flat ground to the cutting, the influence was relatively large. The significant increase in the wind speeds was due to the right-angle structure of the windbreak transition, which resulted in sudden changes of the wind velocity as well as the direction. In addition, the height mismatch in the transition region worsened the protective effect of a typical windbreak.

Selection of Cutting Fluids for Environmentally Clean Machining (청정 절삭 가공을 위한 절삭유제의 선택)

  • Chang, Yoonsang
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.165-175
    • /
    • 1996
  • Cutting fluids in machining process are one of the parameters which have serious effects on the environment. A simple method to accomplish the environmentally clean process is to evaluate the effects of cutting fluids and select one which has the least environmental load. In this research, a process planning to select the best cutting fluid is suggested considering both machinability and environmental effects. The selection criteria and evaluation method named AHP are introduced. The planning process is illustrated with drilling characterized as a heavy-duty and low-speed process. Five standard fluids are compared with respect to five environmental attributes. Compounded cutting oils are superior to water-soluble oils in both machinability and environmental effects.

  • PDF

Generation of Turned Surface by Chattering (선반에서의 채터에 의한 가공 표면 시뮬레이션)

  • 홍민성;김종민
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.25-30
    • /
    • 2003
  • In metal cutting chatter is the unstable cutting phenomenon which caused by the interaction between the dynamics of the chip removal process and the structural dynamics of machine tool. When the vibration and chatter on, it reduces tool life and results in poor surface roughness and low productivity of the machining process. In order to observe the effect of chatter on the turned surface, the surface simulation model based on the surface-shaping system are developed under the ideal condition and the occurrence of the regenerative chatter, and it is compared with experiment of profile. In this study, the experiments were conducted in a CNC lathe without cutting fluid to investigate the phenomenon of the chatter.

Ultra Precision Machining Characteristics of PMMA in HMD optical system (HMD 광학계용 PMMA의 초정밀 가공 특성)

  • Yang J.S.;Kim G.H.;Yang S.C.;Lee I.J.;Kim M.S.;Lee D.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1566-1570
    • /
    • 2005
  • The aspherical lenses are used as optical lens of HMD optical system. The optimum cutting condition of PMMA lens sample with ultra precision SPDT, the diamond tool nose radius, the cutting speed, the feed rate, the depth of cut, and cutting fluid type are found. The demanded surface roughness 10 nm Ra, aspherical form error $1.0\;\mu{m}$ P-V for aspherical lens of optical data storage device are satisfied.

  • PDF

Aerosol Generation Mechanism for Cutting Fluid in Turning (선삭에서 절삭유 미립화 생성 메카니즘)

  • 박성호;고태조;김희술
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.179-184
    • /
    • 2001
  • The mechanism of the aerosol generation consists of spin-off, splash, and evaporation/condensation. Most researchers showed some theoretical model for predicting the particulate size and generation rate without cutting in turning operation. These models were based on the spin-off mechanism and verified good for modeling the process. However, in real machining, the cutting tool destructs the spin-off process, and the majority of the mist is due to splash. In this paper, we show some experimental evidence the aerosol generation mechanism should be explained with splash model as well as spin-off.

  • PDF

A Study on the Regenerative Chatter Simulation in Turning Operation (선반가공시 발생하는 채터 현상의 시뮬레이션에 관한 연구)

  • 홍민성;김종민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.19-25
    • /
    • 2001
  • In metal cutting, chatter is an unstable cutting phenomenon which is due to the interaction of the dynamics of the chip removal process and the structural dynamics of machine tool. When chatter occurs, it reduces tool life and results in poor surface roughness and low productivity of the machining process. In this study, the experiments have been conducted to investigate phenomenon of the chatter in CNC lathe without cutting fluid. In the experiments, two accelerometers were attached at the tail stock and tool holder and the signals were caught. In order to observe the effect of chatter on the surface roughness profiles, surface roughness profiles were generated under the ideal condition and the occurrence of the chatter based on the surface simulation model using surface-shaping system. Finally, the result of experiment and simulation have been compared.

  • PDF

Experimental Verification of Aerosol Generation Mechanism for Cutting Fluid in Turning (선삭에서 절삭유 미립화 생성 메카니즘의 실험적 검증)

  • 고태조;오명석;박성호;김희술
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.93-99
    • /
    • 2002
  • The mechanism of the aerosol generation generally consists of spin-off, splash, and evaporation/condensation. Most researchers showed some theoretical model for predicting the particulate size and generation rate without real cutting in turning operation. These models were based on the spin-off mechanism, and verified good for modeling the process. However, in real machining, the cutting tool destroys the spin-off process, and the majority of the mist is due to splash. In this paper, we show some experimental evidence that the aerosol generation mechanism in real machining should be explained with splash model as well as spin-off.