• Title/Summary/Keyword: cutting depth

Search Result 699, Processing Time 0.023 seconds

Modeling of Depth/Width of Cut for Abrasive Water Jet Milling of Titanium (티타늄의 워터젯 밀링을 위한 가공깊이/폭 모델링)

  • Park, Seung Sub;Kim, Hwa Young;Ahn, Jung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.83-88
    • /
    • 2016
  • Because of the increasing tool cost for cutting hard-to-cut materials, abrasive water jet (AWJ) milling recently has been regarded as a potential alternative machining method. However, it is difficult to control the depth and width of cut in AWJ milling because they vary depending on many AWJ cutting parameters. On 27 conditions within a limited range of pressure, feed rate, and abrasive flow rate, AWJ cutting was conducted on titanium, and depth profiles were measured with a laser sensor. From the depth profile data, depth and width of cut were acquired at each condition. The relationships between depth and parameters and between width and parameters were derived through regression analysis. The former can provide proper cutting conditions and the latter the proper pick feed necessary to generate a milled surface. It is verified that pressure mostly affects depth, whereas abrasive flow rate mostly affects width.

A study on the cutting characteristics of SUS304 by flank wear (Flank 마모에 의한 SUS304의 절삭특성에 관한 연구)

  • Yu, Ki-Hyun;Cheong, Chin-Yong;Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.182-188
    • /
    • 1994
  • This expermintal study is intended to investigate he development of flank wear in turning os SUS304 which is used in industrial applications and is acknowledged as a machining difficult material. In cutting process, change of velocity, change of feed, and change of depth of cut were investigated about the effect of flank wear, and slenderness ratio is also investigated. The variations of unit cutting force with the change of rake angle and the change of uncut chip area are observed. The friction angles are calculated for the change friction force and observed. The friction angles are calculated for the change friction force and normal forcd on the different rake angles. From this experimental study, the following results can be said. 1. Under the high cutting speed condition, the flaank wear is affected by the feed and depth of cut, but the influence of feed and depth of cut to the flank wear is reduced when the velocity is low. 2. The smaller slenderness ratio is, the shorter the tool life results in high cutting speed, and the lower cutting speed is, the lower the effect of slenderness ratio to the flank wear is. 3. Using the characteristics of force-RMS, the flank wear of a tool can be detected. There are almost no differences between the RMS characteristics of cutting force and feed force.

  • PDF

Observation of Chip Shape and Tool Damage with Interrupted Cutting of Carbon Steel for Machine Structures(SM20C) (기계구조용 탄소강(SM20C)의 단속절삭시 칩의 형상 및 공구손상관찰)

  • Bae, Myung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.103-108
    • /
    • 2018
  • In interrupted cutting, the workpiece has a groove that impacts both the cutting tool and the workpiece. Therefore, cutting tool damage occurs rapidly. In this study, I performed interrupted cutting of carbon steel for machine structures (SM20C) using an uncoated carbide tool (SNMG120404, P20), and observed tool damage, cutting chip shape, and the workpiece surface. Results: Under the specific cutting conditions of feed rate = 0.066 mm/rev, cutting speed = 120 m/min, and depth of cut = 0.1 mm; and feed rate = 0.105 mm/rev, cutting speed = 120 m/min, and depth of cut = 0.2 mm, the observed tool damage was small. Similar chip shape was observed (Expt. No. 1, 3, 7). Workpiece damage was observed (Expt. No. 3, 5, 7, 9).

Expert System for optimal cutting speed and feed rate selection (최적 절삭속도및 피이드 선정 전문가 시스템)

  • Lee, Keon-Buem;Kim, Yearn-Min
    • IE interfaces
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • In this study, expert system for the selection of the optimal cutting speed and feed rate was developed using NEXPERT system shell. The NC system has been usually used inefficiently because the input command, which contains cutting speed, feed-rate and the depth of cut, is fixed value which depends on principally operator's experience and machining handbooks providing a guideline for applicable ranges. On the other hand, the optimal cutting conditions vary with time, and depend on tool and machine characteristics, work materials, and cost factor and so on. In this study, if cutting factors, such as, cutting method, material type, cutting depth, and tool nose radius are specified, our expert system gets the information about the standard cutting speed form the cutting speed database, and provides optimum feed rate for these cutting conditions. This cutting speed database can be updated by inputting valid cutting speed which is obtained form the practices.

  • PDF

Improvement of Surface Integrity in Hard Turning With Sensitivity Analysis of Cutting Parameter

  • Kong, Jeong-Heung;Park, Man-Jin;Kim, Jin-Hyun;Jang, Dong-Young;Han, Dong-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.321-322
    • /
    • 2002
  • This paper presents study of effects of cutting parameters such as cutting speed, feed rate and depth of cut on the surface roughness in hard turning. Taguchi Method and linear regression model of design parameters were utilized to identify the controlling process parameters that can monitor the surface roughness in the hard turning operation. In the process optimization, experimental planning was performed using the orthogonal array and concept of the signal-to-noise ratio. Cutting parameters such as speed, feed rate, and depth of cut were selected as process parameters and the ANOVA analysis showed that feed rate and cutting speed had more effect on the roughness variation that depth of cut.

  • PDF

Ultra Precision cutting Characteristics for Al 6061 (Al 6061의 초정밀 절삭특성)

  • 박상진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.591-596
    • /
    • 2000
  • The needs of ultra precision machined parts is increase every days. But the experimental data of nonferrous metal is insufficient. The cutting behavior in micro cutting area is different from that of traditional cutting because of the size effect. Al6061 is widely used as optical parts such as LASER reflector's mirror or multimedia instrument. Al6061 opper is machined by ultra precision machine with natural diamond tool. From the experiment and discussion on the cutting force and worked surface roughness as the variable spindle speed, feed rate and depth of cut. As a result, the cutting force increases as the increasing depth of cut, but the worked surface roughness does not increase so much. The surface roughness is good when spindle sped is above 1200rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF

Effects of cutting condition on surface roughness in the spiral up milling of aluminum alloy (알루미늄 합금의 스파이럴 상향가공 시 절삭조건이 표면거칠기에 미치는 영향)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.83-90
    • /
    • 2014
  • The spiral up milling of an aluminum alloy was performed in this study. In accordance with the cutting condition, the surface roughness behavior and significance of the research with regard to specific factors were analyzed. The cutting speed, feed, and depth of the cut were found to be statistically significant. A higher cutting speed improved the surface roughness. On the other hand, as the feed and depth of the cut increase, the surface roughness decreases. An interaction effect between the feed and depth of the cut was detected. According to the surface roughness in relation to the cutting conditions, the model showed non-linear behavior.

A study on automatic selection of optimal cutting condition on machining in view of economics (기계가공시 분당가공비를 고려한 최적 절삭 조건에 관한 연구)

  • 이길우;이용성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.113-126
    • /
    • 1992
  • Recently the multi-kind, small-amount manufacturing system has been replacing the mass manufacturing system, and domestic machining inustry also is eager to absorb the new technology because of its high productivity and cost reduction. The optimization of the cutting condition has been a vital problem in the machining industry, which would help increase the productivity and raise the international competitiveness. It is intended in this study to investigate the machining costs per unit time which is essential to the analysis of the optimal cutting condition, to computer the cutting speed that lead to the minimum machining costs and the maximum production to suggest the cutting speed range that enables efficient speed cutting, and to review the machining economy in relation to cutting depth and feed. Also considered are the optimal cutting speed and prodution rated in rrelation with feed. It is found that the minimum-cost cutting speed increases and the efficient cutting speed range is reduced as machining cost per unit time increases since the cutting speed for maximum production remains almost constant. The machining cost is also lowered and the production rate increases as the feed increases, and the feed should be selected to satisfy the required surface roughness. The machining cost and production rate are hardly affected by the cutting depth if the cutting speed stays below 100m/min, however, they are subject to change at larger cutting depth and the high-efficient speed range also is restricted. It can be established an adaptive optimal cutting conditions can be established in workshop by the auto-selection progam for optimal operation. It is expected that this method for choosing the optimal cutting conditions might contribute to the improvement of the productivity and reduced the cost. It is highly recommended to prepare the optimal cutting conditionthus obtained for future use in the programing of G-function of CNC machines. If proper programs that automatically select the optimal cutting conditions should be developed, it would be helpful to the works being done in the machine shops and would result in noticeable production raise and cost reduction.

  • PDF

Effects of Cutting Conditions on Surface Roughness in Turning (선삭시 절삭조건이 표면거칠기에 미치는 영향 분석)

  • Lee, Sin-Yeong;Kim, Hong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.139-149
    • /
    • 2001
  • The effects of the cutting conditions on the surface roughness of workpiece in turning were studied in this paper. The workpieces made of carbon steel SM20C and SM45C were tamed without the support of the tailstock center. Cutting conditions were changed in three or flour steps in each parameter and cutting fluid was used. The surface roughness results of tests were measured and the effects of the cutting conditions were analyzed by the method of analysis of variance. The summary of the experimental research is as follows. The main parameters were cutting speed, fred-rate, depth of cut, and the interactions between speed and fled-rate, speed and depth of cut, and fred and depth of cut. As cutting speed increased, surface roughness showed lower value. The surface roughnesses of feed-rate 0.102 mm/rev and 0.147 mm/rev were better than those of feed-rate 0.05 mm/rev and 0.2 mm/rev.

  • PDF

Shearing Behavior of Flat Panel Glass by Oscillating Diamond (진동에 의한 평판 유리의 절단 거동)

  • Choi, Seong-Dae;Cheong, Seon-Hwan;Kim, Gi-Man;Jeon, Jae-Mock;Rho, Young-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 2005
  • The localization of manufacturing technique development is actualizing for low cost with supplies of display devices. We need more high cutting technique because consumers want flat glasses of various sizes. Recently, most general two methods are normal wheel cutting and laser cutting, but both of them have some faults. First, the wheel cutting has cracks and sharp edges of sections. Second, it is easy for laser cutting to cut curved lines. however, it has thermal damage and low traverse speed. I suggest a new cutting method by high-wave frequency vibration wheel cutting(HFVC), which is good for quality improvement. Vertical cracks and crack depth is observed, after HFVC. When the average of the crack depth is $30{\mu}m$ and the average of the wallner liner depth is $200{\mu}m$, it has the most high quality of the sections in this experiment. As a result, when we consider between the normal wheel cutting method and the HFVC method, the latter has low cracks and good quality.

  • PDF