• 제목/요약/키워드: cutter selection efficiency

검색결과 3건 처리시간 0.015초

Rock cutting behavior of worn specially-shaped PDC cutter in crystalline rock

  • Liu, Weiji;Yang, Feilong;Zhu, Xiaohua;Zhang, Yipeng;Gong, Shuchun
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.249-263
    • /
    • 2022
  • The specially-shaped Polycrystalline Diamond Compact (PDC) cutter is widely used in drill bit design due to its advantages of high rock cutting efficiency, strong impact resistance and long service life in hard and abrasive formation drilling. A detailed understanding of rock cutting behavior of worn specially-shaped PDC cutter is essential to improve the drilling efficiency and decrease the drilling costs. In this paper, the theoretical models of two new principles (loading performance (LP) and cutting performance (CP)) are derived for evaluating the cutting process of worn specially-shaped cutter, the theoretical models consider the factors, such as cutter geometry, aggressiveness, stress state, working life, and rock cutting efficiency. Besides, the numerical model of heterogeneous granite is developed using finite element method combined with Voronoi tessellation, the LP and CP of 12 kinds of worn specially-shaped PDC (SPDC) cutters are analyzed. The results found that the mechanical specific energy (MSE) of worn cutters first increase and then decrease with increasing the cutting depth, and the MSE increase with the increase of back rake angle except for Conical cutter and Wedge-shaped cutter. From the perspective of CP, the worn PDC cutters are more suitable for the smaller cutting depths, and the back rake angle has little effect on the CP of the specially-shaped worn PDC cutters. Conical cutter, Saddle-shaped cutter and Ellipse-shaped cutter have the highest CP value, while Rhombus-shaped cutter, Convex cutter and Wedge-shaped cutter have the lowest value in selecting cutters. This research leads to an enhanced understanding of rock-breaking mechanisms of worn SPDC cutters, and provides the basis to select of specially-shaped PDC cutters for the specific target formation.

풍화암 지반에서의 쉴드 TBM 커터도구 선정 및 마모량 평가 - 서울지하철 7호선연장 703공구 중심으로 (The Selection and Abrasion Assessment of Cutter on Shield Tunnelling in Weathered Soil - Seoul Subway Line 7 Extension, Construction Lot 703)

  • 김용일;이상한;정두석;임종윤;박광준;박준수
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2006년도 창립 25주년 기념 특별심포지엄
    • /
    • pp.59-79
    • /
    • 2006
  • 쉴드터널 공사에 있어서 커터도구의 절삭능력은 터널시공의 성패를 좌우하는 주요 변수이기 때문에 지반에 적합한 커터도구의 형상, 규격 및 재질의 선정은 무엇보다 중요하다. 1818년 쉴드공법 발명 이래 암반에 대한 커터도구는 많은 실험과 연구를 통해 발전해 왔으나, 풍화토 및 풍화암 지반에서의 커터도구에 대한 연구는 미진한 상황이다. 본 논고에서는 쉴드공법으로 설계된 서울지하철 7호선 연장 703공구 구간중 최대연장 920m의 풍화대 지반에 대하여 굴착중 커터도구의 무교체 시공과 굴착효율 증진을 위한 커터의 선정을 위하여 커터의 형상 및 재질에 대한 비교 분석을 하였으며, 그 선정사유에 대하여 소개하였다. 또한 국내외로 연구가 미진하였던 풍화토 및 풍화암 지반에서의 커터 마모량 평가방법을 제시하여 설계의 타당성을 검증하였으며, 특히 해외의 시공사례에 대한 분석을 통하여 커터 종류에 따른 지반별 마모계수를 제시하였다.

  • PDF

5축 CAM 가공 작업 프로세스 개선을 위한 가공 템플릿 활용 (Utilization of machining templates to improve 5-axis CAM machining process)

  • 이동천;김선용
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.45-49
    • /
    • 2017
  • Currently, a lot of efforts to make increases the manufacturing efficiency have tried and there is growing the interest to implementing the machining operation through CAM automation and optimization. This kind of movement has shown gradually in 5X milling as well as 3X milling task. By the way, in case of 5X milling, it is difficult to hire the CAM experts who is an experience for 5X machining and also it has too big trouble to use them due to high cost. For this reason, you can see the manufacturer who is concern the CAM S/W to provide the NC automation program that beginners can generate easily the 5X milling in short term and the existing 5X milling process can be improved. These requirements need to make a NC automation process including the practical machining strategies same as the generation by NC expert. In order to support this, it is necessary to directly apply the 3D machining part based on NC template which includes the machining procedures, standard cutter library, auto machine area selection, analyze tool for part shape, machining condition setting considering the material stiffness to be provided by CimatronE and it should be created the 5axis machining data by a minimized operation. With user-friendly, CimatronE's NC machining automation tools improve the 5-axis machining process and speed up the process, maximizing work efficiency and improving product productivity compared to existing machining tasks.