• 제목/요약/키워드: cutter mill

검색결과 60건 처리시간 0.021초

圓錐팁 Ball End Mill 의 3次元 曲面切削力系에 관한 硏究 (A Study on Free Surface Cutting Force System of Conical Tipped Circular Cutting Edge Ball End Mill)

  • 박천향;맹희구
    • 대한기계학회논문집
    • /
    • 제9권4호
    • /
    • pp.440-451
    • /
    • 1985
  • 본 논문에서는 곡면절삭력계의 해석을 통하여 절삭성과 내마멸성이 우수한 공 구기하형상과 곡면절삭과정에서 절삭조건에 따라 변화하는 가공정밀도 및 안정성을 규 명하고자 한다.

MINLP를 이용한 제지 공정의 파지 손실 최소화 (Minimization of Trim Loss Problem in Paper Mill Scheduling Using MINLP)

  • 나성훈;고대호;문일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.392-392
    • /
    • 2000
  • This study performs optimization of paper mill scheduling using MINLP(Mixed-Integer Non-Linear Programming) method and 2-step decomposing strategy. Paper mill process is normally composed of five units: paper machine, coater, rewinder, sheet cutter and roll wrapper/ream wrapper. Various kinds of papers are produced through these units. The bottleneck of this process is how to cut product papers efficiently from raw paper reel and this is called trim loss problem or cutting stock problem. As the trim must be burned or recycled through energy consumption, minimizing quantity of the trim is important. To minimize it, the trim loss problem is mathematically formulated in MINLP form of minimizing cutting patterns and trim as well as satisfying customer's elder. The MINLP form of the problem includes bilinearity causing non-linearity and non-convexity. Bilinearity is eliminated by parameterization of one variable and the MINLP form is decomposed to MILP(Mixed-Integer Linear programming) form. And the MILP problem is optimized by means of the optimization package. Thus trim loss problem is efficiently minimized by this 2-step optimization method.

  • PDF

SCM415강을 이용한 경도가공 특성 (Hardness Machining Characteristics using the SCM415 Still)

  • 신미정;김인수;김진수;김정화;김명규
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.44-49
    • /
    • 2017
  • In this study, the cutting conditions of moving speed, number of main axial revolutions, etc. are changed for the chrome molybdenum steel (SCM415) material and carbide ball end mill tool to study the changes for processing intensity in the cutting process. The results that confirm the intensity of the measured value of the specimen for SCM415 display the intensity with an average 1.0667 HrC. After the fact cutter, it was able to confirm the average intensity of 8.3815 HrC. In addition, the intensity value after image processing may determine the average intensity survey value of 5.8690 HrC and the different intensity values with image processing after face cutting are shown for an average of ${\pm}2.5125HrC$. The different value of intensity with the specimen and image processing is confirmed for an average of 4.8024 HrC. The results of comparing the intensity following the number of main axial revolutions and moving speed show that the intensity is highest for 3,000 rpm and F200, and lowest for 4,000 rpm and F200.

An implementation of CSG modeling technique on Machining Simulation using C++ and Open GL

  • ;김수진;이종민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1053-1056
    • /
    • 2008
  • An application of CSG (Constructive Solid Geometry) modeling technique in Machining Simulation is introduced in this paper. The current CSG model is based on z-buffer CSG Rendering Algorithm. In order to build a CSG model, frame buffers of VGA (Video Graphic Accelerator) should be used in term of color buffer, depth buffer, and stencil buffer. In addition to using CSG model in machine simulation Stock and Cutter Swept Surface (CSS) should be solid. Method to create a solid Cuboid stock and Ball-end mill CSS are included in the present paper. Boolean operations are used to produce the after-cut part, especially the Difference operation between Stock and CSS as the cutter remove materials form stock. Finally, a small program called MaSim which simulates one simple cut using this method was created.

  • PDF

평 엔드밀을 이용한 평면가공에서의 가공면 형성기구 (Plane Surface Generation with a Flat End Mill)

  • 류시형;김민태;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.234-243
    • /
    • 1999
  • Using the geometric and the vector methods, three dimensional surface texture and roughness models in flat end milling are developed. In these models, rear cutting effect on surface generation is considered along with tool run-out and tool setting error including tool tilting and eccentricity between tool center and spindle rotational center. Rear cutting is the secondary cutting of the already machined surface by the trailing cutting edge. The effects of tool geometry and tool deflection on surface roughness are also considered. For representing the surface texture more practically, three dimentional surface topography parameters such as RMS deviaiton, skewness and kurtosis are introduced and used in expressing the surface texture characteristics. Under various cutting conditions, it is confirmed that the developed models predict the real surface profile precisely. These models could contribute to the cutter design and cutting condition selection for the reduction of machining and manual finishing time.

  • PDF

볼엔드밀 공구에 의한 사각형상 가공시 공구 휨에 따른 절삭력 특성 (Cutting Force Characteristics and Tool Deflection When Machining Rectangular Shapes with a Ball End Mill)

  • 김인수;김상현;이동섭;왕덕현
    • 한국기계가공학회지
    • /
    • 제18권6호
    • /
    • pp.26-32
    • /
    • 2019
  • Ball end mills used for high-speed and high-precision machining require longer machining time than flat end mills or face cutters, since the tool diameter is limited and the rigidity is reduced by the characteristics of the tool's cutting edge: at the top end of the tool, the cutting speed approaches zero and hardly removes any material. Because there is little material removal at the top end of the ball end mill, the outer cutting edge performs the majority of the work; this irregular cutting force deforms the tool and shortens its life. In this study, we attached an eddy-current sensor to a tool to measure the deformation from the cutting force and we used a tool dynamometer to measure the cutting force. We found that the change in cutting force is dependent on the change in feed rate during square-shaped processing and, as the feed rate is accelerated, the cutting force also increases. Higher cutting forces increase tool deformation.

볼기어캠의 5-축 가공에 관한 연구 (A Study on the 5-Axis Machining for Ball Gear Cam)

  • 조현덕;우현구;신용범
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.98-104
    • /
    • 2020
  • In this work, a study on the 5-axis machining of ball gear cam is conducted which is a continuation of reference [1]. The ball gear cam used in this study delivers motion in conjunction with the ball supported by the turret. Therefore, it requires carbonizing heat treatment and is usually completed using a 4-axis machining with a carbide ball end mill. If the nose part of the ball end mill is not allowed to participate in the machining, then CBN tools without the nose part can be used. However, machining of certain shapes can be carried out only by contacting the ball in some of the areas on either side which can improve the surface of the machining. This requires a 5-axis machining in order to maintain a constant angle for the processing path. Therefore, in this work, the 5-axis machining method is studied in order to maintain the direction of the cutter axis at a constant angle with the tangent direction of the curve-ball gear cam. Furthermore, the 5-axis machining program for the ball gear cam was developed and the machining experiment was completed and verified.

평엔드밀 포켓가공시 절삭력과 공구변형에 관한 연구 (A Study on the Cutting Forces and Tool Deformation when Flat-ended Pocket Machining)

  • 최성윤;권대규;박인수;왕덕현
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.28-33
    • /
    • 2017
  • Recently, the operation of precision pocket machining has been studied for the high speed and accuracy in industry to increase production and quality. Moreover, the demand for products with complex 3D free-curved surface shapes has increasing rapidly in the development of computer systems, CNC machining, and CAM software in various manufacturing fields, especially in automotive engineering. The type of aluminum (Al6061) that is widely used in aerospace fields was used in this study, and end-mill down cutting was conducted in fillet cutting at a corner with end-mill tools for various process conditions. The experimental results may demonstrate that the end mill cutter with four blades is more advantageous than that of the two blades on shape forming in the same condition precise machining conditions. It was also found that cutting forces and tool deformation increased as the cutting speed increased. When the tool was located at $45^{\circ}$ (four locations), the corner was found to conduct the maximum cutting force rather than the start point of the workpiece. The experimental research is expected to increase efficiency when the economical precision machining methods are required for various cutting conditions in industry.

CAD 모델에 기초한 모사절삭을 통한 가상절삭 시스템 개발 (Development of a Virtual Machining System by a CAD Model Based Cutting Simulation)

  • 배대위;고태조;김희술
    • 한국생산제조학회지
    • /
    • 제8권3호
    • /
    • pp.83-91
    • /
    • 1999
  • In this paper, we suggest a virtual machining system that can simulate cutting forces of ball end milling at the stage of part design. Cutting forces, here, are estimated from the machanistic model that uses the concept of specific cutting farce coefficient. To this end, we need undeformed chip thickness which is used for calculating chip load. It is derived from the Z-map data of a CAD model. That is, chip load is the height difference between the cutting tool and the workpiece at an arbitrary position. The tool contact point is referred from the cutter location data. On the other hand, the workpiece height is acquired from the Z-map model of a CAD data. From the experimental verification, we can simulate machining process effectively to the slot and the side cutting of ball end mill.

  • PDF

CAD 모델에 기초한 모사절삭을 통한 가상절삭시스템 개발 (Development of a Virtual Machining System by a CAD Model Based Cutting Simulation)

  • 배대위;고태조;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.942-946
    • /
    • 1997
  • In this research,we suggest a virtual machining system that can simulate sutting forces at the stage of design. Cutting forces,here, are modeled form the machanistic model of the ball end milling. To this end, we need undeformed chip thickness which is used for calculating chip load. It is derived form the z-map data of a CAD model. That is, chip load is the height difference between the cutting tool contact point and the workpiece at arbitrary position. The tool contact point is referred from the cutter location. Form the experimental verification, we can simulate machining process effectively to the slot and the side cutting of ball end mill.

  • PDF