• Title/Summary/Keyword: cut-surface roughness test

Search Result 45, Processing Time 0.028 seconds

Wire-cut 방전가공에서 가공조건이 표면거칠기에 미치는 영향

  • 유중학;최만성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.109-114
    • /
    • 1992
  • This paper describes an effect of operating condition on surface roughness in wire-cut FDM. The experimental values of surface roughness were measured by the test pieces under the condition of changing. On time, Off time, and Feed rate after fixing other conditions. The material of the test pieces is the alloy tool steel(STD 11) and was used after heat treatment. The results are as follows: 1. The surface roughness became rapidly worse according to the increase of On time and Feed rate. 2. The surface roughness became slowly better according to the increase of Off time.

A Study on the Surface Roughness & Bending Strength for Zirconia Ceramic Grinding (지르코니아 세라믹 연삭시 표면조도와 굽힘강도에 관한 연구)

  • Ha, Sang-Baek;Choi, Hwan;Lee, Jong-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.131-136
    • /
    • 2000
  • This paper is concerned with the surface roughness and the bending strength of ground workpiece in ZrO2 ceramic grinding. Surface roughness was measured with surface tracer and bending strength value was obtained by three-point bending test on machining center using tool dynamometer. Grinding experiments were carried out to examine the effects of grinding conditions including diamond mesh size, table speed, and depth of cut on ground surface roughness. The correlation between surface roughness and bending strength was also inspected. The experimental results indicate that the rougher surface is produced as the mesh size of diamond wheel is reduced and table speed is increased, but surface roughness is not affected by depth of cut. The values of bending strength decrease as the values of Ra, Rmax and Ku increase.

  • PDF

A Study on the Surface Roughness & Bending Strength for Zirconia Ceramic Grinding (질코니아 세라믹 연삭시 표면조도와 굽힘강도에 관한 연구)

  • 하상백
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.465-470
    • /
    • 2000
  • This paper is concerned with the surface roughness and the bending strength of ground workpiece in ZrO2 ceramic grinding. Surface roughness was measured with surface tracer and bending strength value was obtained by three-point bending test on machining center using tool dynamometer. Grinding experiments were carried out to examine the effects of grinding conditions including diamond mesh size, table speed, and depth of cut on ground surface roughness. The correlation between surface roughness and bending strength was also inspected. The experimental results indicate that the rougher surface was produced as the mesh size of diamond wheel is reduced and table speed is increased, but surface roughness is not affected by depth of cut. The values of bending strength decrease as the values of Ra, Rmax and Ku increase.

  • PDF

The Improved Cutting Parameter Design of End-milling for SM25C Material (SM25C 재질의 엔드밀 가공을 위한 개선된 절삭파라미터 선정)

  • Im, Sung-Hoon;Kim, Kyeong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.31-38
    • /
    • 2012
  • In this paper, we selected primary cutting parameters that influence on surface roughness of cut bottom surface in end-milling for SM25C material. Those are overhang, depth of cut, feed rate and spindle speed. And then performed orthogonal array experiment and ANOVA by Taguchi method to determine that improved level combination of cutting parameters for betterment of working efficiency and surface roughness one of quality characteristics. And we verified a advisability of prediction model by verification test about level combination. From the results, main cutting parameter influences on surface roughness is spindle speed and the next is feed rate.

Surface roughness evaluation in turning by an orthogonal array method (직교배열법에 의한 선삭가공시 표면거칠기 평가)

  • 배병중;박태준;양승한;이영문;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.862-865
    • /
    • 2000
  • The object of this paper is to evaluate the surface roughness using the experimental equation of surface roughness, which is developed in turning by an orthogonal array method. $L_9{3^4}$ orthogonal array method, one of fractional factorial design has been used to study effects of main cutting parameters such as cutting speed, feed rate and depth of cut, on the surface roughness. And the analysis of variance (ANOVA)-test has been used to check the significance of cutting parameters. Using the result of ANOVA-test, the experimental equation of surface roughness, which consists of only significant cutting parameter - feed rate, has been developed. The coefficient of determination of this equation is 0.962.

  • PDF

Development of laser process for stencil manufacturing (스텐실 제작용 레이저 공정기술 개발)

  • 신동식;이영문;이제훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.989-992
    • /
    • 1997
  • The objective of this study is to develop stencil cutting process and determine optimal conditions which make good-quality stencil by using a Nd:YAG laser. The effects of process parameters such as laser power, type of mask, gas pressure, cutting speed and pulse width on the cut edge quality were investigated. In order to analyze the cut surface characteristics(roughness, kerf width, dross) optical microscopy, SEM photography and roughness test were used. A a results, the optimal conditions of process parameters were determined, and the practical feasibility of the proposed system is also examined by using a commercial gerber file for PCB stencil manufacturing.

  • PDF

A Study on Optimal Design of Face Milling Cutter Geometry(II) -With Respect to Toll Life and Surface Roughness- (정면밀링커터의 최적설계에 대한 연구 (2) -공구수명 및 표면조도 중심으로-)

  • 김정현;김희술
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2225-2233
    • /
    • 1994
  • In order to improve the cutting ability of face mill, a model for optimal cutter shape was developed to minimize resultant cutting force by combing cutting force model and optimal technique. Wear test and surface roughness test for optimized and conventional cutter were performed. The new optimized cutter shows longer tool life of 2.29 times than conventional cutter in light cutting condition and 2.52 times in heavy cutting condition. The surface roughness of workpiece by optimized cutter is improved in heavy cutting condition, but deteriorated in light cutting condition in comparison with conventional cutter. The surface profiles of workpiece were analyzed by Fourier transformation. The distribution of cut lay left on workpiece by optimized cutter is more regular than that by the conventional cutter.

Predict of Surface Roughness Using Multi-regression Analysisin Turning of Plastic Mold Steel (플라스틱 금형강의 선삭 가공시 중회귀분석을 이용한 표면거칠기 예측)

  • Bae, Myung-Il;Rhie, Yi-Seon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.87-92
    • /
    • 2013
  • In this study, we carried out the turning of plastic mold steel(STAVAX) with whisker reinforced ceramic tool(WA1) and analyzed ANOVA(Analysis of Variance) test. Multi-regression analysis was performed to find influential factors to surface roughness and to derive regression equation. Results are follows: From ANOVA test and confidence interval analysis of surface roughness, We found that influential factors to surface roughness was feed rate, cutting speed and depth of cut in order. From multi-regression analysis, we derived regression equation of STAVAX. it's coefficient of determination($R^2$) was 0.945 and It means that regression equation is significant. From experimental verification, we confirmed that surface roughness was predictable by regression equation. Compared with former research, we confirmed that increase of feed rate is the main cause of the growing of surface roughness and cutting force.

Analysis of Cutting Parameters for $Si_3 N_4$-hBN Machinable Ceramics Using Tungsten Carbide Tool (초경공구를 사용한 $Si_3 N_4$-hBN 머시너블 세라믹 가공에서 절삭 파라미터 분석과 결정)

  • 장성민;조명우;조원승;박동삼
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.36-43
    • /
    • 2003
  • In machining of ceramic materials, they are very difficult-to cut materials because of there high strength and hardness. Machining of ceramics are characterized by cracking and brittle fracture. Generally, ceramics are machined using conventional method such as finding and polishing. However these processes are generally costly and have low MRR(material removal rate). This paper focuses on determining the optimal levels of process parameters for products with CNC machining center. For this purpose, the optimization of cutting parameters is performed based on experimental design method. A design and analysis of experiments is conducted to study the effects of these parameters on the surface roughness by using the S/N ratio, analysis of ANOVA and F-test. Cutting parameters, namely, cutting speed, feed and depth of cut are optimized with consideration of the surface roughness.

A Study on the Machining Characteristics of Tool Material for Cold Forging (냉간단조용 금형강의 절삭특성에 관한 연구)

  • Choi, W.S.;Nam, J.H.;Kang, C.W.;Kin, W.G.;Lee, I.;Kwon, J.R.;Park, S.Y.;Mun, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.135-138
    • /
    • 2009
  • In this study we investigate the machining characteristics of tool material for cold forging by using the machining center. The test was in the SKD62 cold forging material by 2-edge endmill with cutting fluid. The coating conditions are depth of cut 1,2,3mm. WC-endmill, federate 20mm/min, cutting velocity 20m/min. The surface roughness increase as the depth of cut increase. Also cutting force increase whiles the depth of cut increase.

  • PDF