• Title/Summary/Keyword: cut-out volume

Search Result 47, Processing Time 0.026 seconds

Estimation of Usable Cut-out Volume Considering the Structural and Engineering Properties of Rock Mass (암반의 구조적 및 공학적 특성을 고려한 가용절취량 산정)

  • 이창섭;홍관석;조태진
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.101-113
    • /
    • 2001
  • Structural and geological engineering properties of the rock mass distributed in the Yokmang mountain area were investigated to detenninc the usable cut-out volume and quarrying efficiency. The study area is located in the southern tip of the Yangsan fault system which controls the geological structure of the Kvungsang basin. As a result, the study area is mainly composed of andesicic. rhyolitic. and granitic rocks of the Cretaceous Kyungsang Supergroup and a series of right-handed strike-slip faults is developed along NNE-SSW direction. These regional faults significantly affect the spatial and meclwnical characteristics of joints such as spacing, frequency, and compressive strength. The joint frequency is highest along the fault zones and decreases toward the remote region. Based on the geological information obtained from the field survey, the detailed structure of the Yokmang mountain was analyzed and the volume of the rock mass was assessed. Considering the minimum rock block size required for the construction of a coastal dumping site, potential cut-out volume is then estimated to be 4,018,000m$^3$ the volume % of which is 48% of Yokmang mountain including the soil and weathered rock and 61% of the unweathered rock mass.

  • PDF

Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs

  • Motezaker, Mohsen;Eyvazian, Arameh
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.289-297
    • /
    • 2020
  • In the present research post-buckling of a cut out plate reinforced through carbon nanotubes (CNTs) resting on an elastic foundation is studied. Material characteristics of CNTs are hypothesized to be altered within thickness orientation which are calculated according to Mori-Tanaka model. For modeling the system mathematically, first order shear deformation theory (FSDT) is applied and using energy procedure, the governing equations can be derived. With respect to Rayleigh-Ritz procedure as well as Newton-Raphson iterative scheme, the motion equations are solved and therefore, post-buckling behavior of structure will be tracked. Diverse parameters as well as their reactions on post-buckling paths focusing cut out measurement, CNT's volume fraction and agglomeration, dimension of plate and an elastic foundation are investigated. It is revealed that presence of a square cut out can affect negatively post-buckling behavior of structure. Moreover, adding nanocompsits in the matrix leads to enhancement of post-buckling response of system.

Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials

  • Jamali, M.;Shojaee, T.;Kolahchi, R.;Mohammadi, B.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.691-712
    • /
    • 2016
  • In this editorial, buckling analytical investigation of the nanocomposite plate with square cut out reinforced by carbon nanotubes (CNTs) surrounded by Pasternak foundation is considered. The plate is presumed has square cut out in center and resting on Pasternak foundation. CNTs are used as amplifier in plate for diverse distribution, such as uniform distribution (UD) and three patterns of functionally graded (FG) distribution types of CNTs (FG-X, FG-A and FG-O). Moreover, the effective mechanical properties of nanocomposite plate are calculated from the rule of mixture. Domain decomposition method and orthogonal polynomials are applied in order to define the shape function of nanocomposite plate with square cut out. Finally, Rayleigh-Ritz energy method is used to obtain critical buckling load of system. A detailed parametric study is conducted to explicit the effects of the dimensions of plate, length of square cut out, different distribution of CNTs, elastic medium and volume fraction of CNTs. It is found from results that increase the dimensions of plate and length of square cut out have negative impact on buckling behavior of system but considering CNTs in plate has positive influence.

Numerical Simulation of Dam-Break Problem with Cut-cell Method (분할격자를 이용한 댐붕괴파의 수치해석)

  • Kim, Hyung-Jun;Yoo, Je-Seon;Lee, Seung-Oh;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1752-1756
    • /
    • 2008
  • A simple, accurate and efficient mesh generation technique, the cut-cell method, is able to represent an arbitrarily complex geometry. Both structured and unstructured grid meshes are used in this method. First, the numerical domain is constructed with regular Cartesian grids as a background grid and then the solid boundaries or bodies are cut out of the background Cartesian grids. As a result, some boundary cells can be contained two numerical conditions such as the flow and solid conditions, where the special treatment is needed to simulate such physical characteristics. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. Also, the TVD-WAF method is applied on the Cartesian cut-cell grids to stabilize numerical results. Present method is validated for the rectangular dam break problems. Initially, a conventional grid is constructed with the Cartesian regular mesh only and then applied to the dam-break flow simulation. As a comparative simulation, a cut-cell grids are applied to represent the flow domain rotated with arbitrary angles. Numerical results from this study are compared with the results from the case of the Cartesian regular mesh only. A good agreement is achieved with other numerical results presented in the literature.

  • PDF

Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT

  • Jamali, M.;Shojaee, T.;Mohammadi, B.;Kolahchi, R.
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.405-417
    • /
    • 2019
  • This research is devoted to study post-buckling analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) micro plate with cut out subjected to magnetic field and resting on elastic medium. The basic formulation of plate is based on first order shear deformation theory (FSDT) and the material properties of FG-CNTRCs are presumed to be changed through the thickness direction, and are assumed based on rule of mixture; moreover, nonlocal Eringen's theory is applied to consider the size-dependent effect. It is considered that the system is embedded in elastic medium and subjected to longitudinal magnetic field. Energy approach, domain decomposition and Rayleigh-Ritz methods in conjunction with Newton-Raphson iterative technique are employed to trace the post-buckling paths of FG-CNTRC micro cut out plate. The influence of some important parameters such as small scale effect, cut out dimension, different types of FG distributions of CNTs, volume fraction of CNTs, aspect ratio of plate, magnitude of magnetic field, elastic medium and biaxial load on the post-buckling behavior of system are calculated. With respect to results, it is concluded that the aspect ratio and length of square cut out have negative effect on post-buckling response of micro composite plate. Furthermore, existence of CNTs in system causes improvement in the post-buckling behavior of plate and different distributions of CNTs in plate have diverse response. Meanwhile, nonlocal parameter and biaxial compression load on the plate has negative effect on post-buckling response. In addition, imposing magnetic field increases the post-buckling load of the microstructure.

Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM

  • Varun, Katiyar;Ankit, Gupta;Abdelouahed, Tounsi
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.621-640
    • /
    • 2022
  • In the present article, the vibration response of a geometrically imperfect bi-directional functionally graded plate (2D-FGP) with geometric discontinuities and micro-structural defects (porosities) has been investigated. A porosity model has been developed to incorporate the effective material properties of the bi-directional FGP which varies in two directions i.e. along the axial and transverse direction. The geometric discontinuity is also introduced in the plate in the form of a circular cut-out at the center of the plate. The structural kinematic formulation is based on the non-polynomial trigonometric higher-order shear deformation theory (HSDT). Finite element formulation is done using C° continuous Lagrangian quadrilateral four-noded element with seven degrees of freedom per node. The equations of motion have been derived using a variational approach. Convergence and validation studies have been documented to confirm the accuracy and efficiency of the present formulation. A detailed investigation study has been done to evaluate the influence of the circular cut-out, geometric imperfection, porosity inclusions, partial supports, volume fraction indexes (along with the thickness and length), and geometrical configurations on the vibration response of 2D-FGP. It is concluded that after a particular cut-out dimension, the vibration response of the 2D FGP exhibits non-monotonic behavior.

A Study on the Optimum Finish Allowance for Machining Accuracy Improvement in the End Milling Processes (엔드밀 가공의 정밀도 향상을 위한 최적정삭여유에 관한 연구)

  • 최종근;김형선;김성초
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.8-15
    • /
    • 2004
  • A significant error in the end milling processes is generated due to using slender tools of which the strengths are not sufficient. In order to obtain the desired machining accuracy, therefore, it is general that at first the rough cut is implemented, then the finish cut is followed. The rough cut eliminates large volume and the finish cut does the remained part. This remaining portion after the rough cut is called as the finish allowance. Larger finish allowances make it hard to get precise dimensions at a following finish cut. Smaller finish allowances are helpful for good dimension, but it sometimes is responsible for inferior surface qualities and over cuts. This study suggests a guidance for the optimum finish allowance for machining accuracy improvement, in which the rough cuts are regulated to remain the desired margins without any over cuts. Some experiments were carried out with various cutting conditions including the change of tool strengths and depth of cuts, and also extended to up millings as well as down millings.

A Study on Assessment of Advance and Overbreak in Underground Excavation Utilizing 3D Scanner (3D 스캐너를 이용한 지하공동의 굴진장 및 여굴 평가 기초연구)

  • Noh, You-Song;Kim, Jung-Kyu;Ko, Young-Hun;Kim, Seong-Jun;Chung, So-Keul;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.33 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • Abstract This study is to efficiently calculate and evaluate the elements of advance, overbreak and underbreak on the mine under the production using the 3D laser scanner. For this purpose, a 3D laser scanner was sued to acquire the point-cloud which records the space coordinates and modelling of the underground tunnel using the 3D modeling program. When each element was observed through the study result, the advance on the center cut was 2.6m in average while the total advance was 2.4m. If the drilling length of 3.8m is based, the advance rate was evaluated to be 67% in average in the center cut section with the total average of 64%. In addition, when the volume of overbreak was measured based on the design cross section, the average overbreak volume was found to be $4.5m^3$ on left wall, $4.5m^3$ on right wall, and $5m^3$ on roof with the total volume of $14m^3$. When the overbreak volume is measured based on the look-out cross section, it was $3m^3$ on roof with the total volume of $8.4m^3$. The rate of overbreak volume against the average excavation volume was 8% based on the design cross section and 5% based on the look-out cross section.

Evaluation of R-curve Behavior Analysis and Machinability of $Si_3N_4-hBN$ Machinable Ceramics ($Si_3N_4-hBN$ 머시너블 세라믹의 R-curve 거동분석과 가공성 평가)

  • 장성민;조명우;조원승;이재형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.61-70
    • /
    • 2004
  • Generally, ceramics are very difficult-to-cut materials because of its high strength and hardness. The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Ceramics can be machined with traditional method such as grinding and polishing. However, such processes are generally cost-expensive and have low material removal rate. Thus, in this paper, to overcome these problems. BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 5,10,15,20,25 and 30%. And, mechanical properties, R-curve behavior and machining tests are carried out to evaluate the machining properties of the manufactured machinable ceramics.

The Utilization of Naturally Grown Hardwood Timber Trees and Shrubs in Korea (자연생(自然生) 활엽수(闊葉樹)의 경제적(經濟的) 이용(利用)에 관(關)한 연구(硏究))

  • Shim, Chong-Supp;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.196-196
    • /
    • 1982
  • There is a heavy stocked wood volume in the forest of Kang-Won Province compared with the other forests of Korean Provinces. It mainly, however, consists of non-productive and inferior hardwoods and shrubs which grows naturally. -This naturally grown hardwood forest should be cut and reforested with more economical confierous and diciduous tree species by artificial and natural regeneration under the positive government support. This study was carried out to survey the reasonable and economical utilization measures on harvesting wood products when existing hardwood forest should be cut primarily. This is the rust report on the resources and the classification of tree species by the uses of wood growing in the hardwood forest of Kang-Won Province. According to the investigation, 321 hardwood species are growing in this forest, and 141 species of them are extremely not suitable for wood production. The usable species as fuel wood was 180, and these are able to classify into the 22 groups by the uses of wood.

  • PDF