• 제목/요약/키워드: cut vertex

검색결과 17건 처리시간 0.02초

THE CONNECTIVITY AND THE MODIFIED SECOND MULTIPLICATIVE ZAGREB INDEX OF GRAPHS

  • DU, JIANWEI;SUN, XIAOLING
    • Journal of applied mathematics & informatics
    • /
    • 제39권3_4호
    • /
    • pp.339-358
    • /
    • 2021
  • Zagreb indices and their modified versions of a molecular graph are important descriptors which can be used to characterize the structural properties of organic molecules from different aspects. In this work, we investigate some properties of the modified second multiplicative Zagreb index of graphs with given connectivity. In particular, we obtain the maximum values of the modified second multiplicative Zagreb index with fixed number of cut edges, or cut vertices, or edge connectivity, or vertex connectivity of graphs. Furthermore, we characterize the corresponding extremal graphs.

ON PATHOS BLOCK LINE CUT-VERTEX GRAPH OF A TREE

  • Nagesh, Hadonahalli Mudalagiraiah
    • 대한수학회논문집
    • /
    • 제35권1호
    • /
    • pp.1-12
    • /
    • 2020
  • A pathos block line cut-vertex graph of a tree T, written P BLc(T), is a graph whose vertices are the blocks, cut-vertices, and paths of a pathos of T, with two vertices of P BLc(T) adjacent whenever the corresponding blocks of T have a vertex in common or the edge lies on the corresponding path of the pathos or one corresponds to a block Bi of T and the other corresponds to a cut-vertex cj of T such that cj is in Bi; two distinct pathos vertices Pm and Pn of P BLc(T) are adjacent whenever the corresponding paths of the pathos Pm(vi, vj) and Pn(vk, vl) have a common vertex. We study the properties of P BLc(T) and present the characterization of graphs whose P BLc(T) are planar; outerplanar; maximal outerplanar; minimally nonouterplanar; eulerian; and hamiltonian. We further show that for any tree T, the crossing number of P BLc(T) can never be one.

신장 트리 기반 표현과 MAX CUT 문제로의 응용 (A Spanning Tree-based Representation and Its Application to the MAX CUT Problem)

  • 현수환;김용혁;서기성
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1096-1100
    • /
    • 2012
  • Most of previous genetic algorithms for solving graph problems have used a vertex-based encoding. We proposed an edge encoding based new genetic algorithm using a spanning tree. Contrary to general edge-based encoding, a spanning tree-based encoding represents only feasible partitions. As a target problem, we adopted the MAX CUT problem, which is well known as a representative NP-hard problem, and examined the performance of the proposed genetic algorithm. The experiments on benchmark graphs are executed and compared with vertex-based encoding. Performance improvements of the spanning tree-based encoding on sparse graphs was observed.

최적분해법에 의한 최단경로계산 (Shortest paths calculation by optimal decomposition)

  • 이장규
    • 전기의세계
    • /
    • 제30권5호
    • /
    • pp.297-305
    • /
    • 1981
  • The problem of finding shortest paths between every pair of points in a network is solved employing and optimal network decomposition in which the network is decomposed into a number of subnetworks minimizing the number of cut-set between them while each subnetwork is constrained by a size limit. Shortest path computations are performed on individual subnetworks, and the solutions are recomposed to obtain the solution of the original network. The method when applied to large scale networks significantly reduces core requirement and computation time. This is demonstrated by developing a computer program based on the method and applying it to 30-vertex, 160-vertex, and 273-vertex networks.

  • PDF

무방향 그래프의 최대인접병합 방법을 적용한 최소절단 알고리즘 (A Minimum Cut Algorithm Using Maximum Adjacency Merging Method of Undirected Graph)

  • 최명복;이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.143-152
    • /
    • 2013
  • 주어진 그래프 G=(V,E), n=|V|, m=|E|에 대해 최소절단을 찾는 연구는 공급처 s와 수요처 t가 주어지지 않은 경우와 주어진 경우로 구분된다. s와 t가 주어지지 않은 무방향 가중 그래프에 대한 Stoer-Wagner 알고리즘은 임의의 정점을 고정시키고 최대 인접 순서로 나열하여 마지막 정점의 절단 값과 마지막 2개 정점을 병합하면서 정점을 축소시키는 방법으로 $\frac{n(n-1)}{2}$회를 수행한다. 또한, s와 t가 주어진 그래프에 대한 Ford-Fulkerson 알고리즘은 증대경로를 탐색하여 절단 간선을 결정한다. 더 이상의 증대 경로가 없으면 절단 간선들의 조합으로 최소절단을 결정해야 한다. 본 논문은 단일 s와 t가 주어진 무방향 가중 그래프에 대해 최대인접 병합과 절단값을 동시에 계산하는 방법으로 n-1회 수행으로 단축시켰다. 또한, Stoer-Wagner 알고리즘은 최소 절단을 기준으로 V=S+T로 양분하지 못할 수 있는데 반해 제안된 알고리즘은 정확히 양분시켰다. 제안된 알고리즘은 Ford-Fulkerson의 증대경로를 찾는 수행횟수보다 많이 수행하지만 수행과정에서 최소절단을 결정하는 장점이 있다.

최대 수용량-기반 최소절단 알고리즘 (Maximum Capacity-based Minimum Cut Algorithm)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권5호
    • /
    • pp.153-162
    • /
    • 2011
  • 최소 절단 문제는 공급처 S에서와 수요처 T로의 흐름 용량이 최소가 되는 지점들을 절단하는 문제이다. 망의 병목지점을 찾는 방법은 대부분 유동망을 계산하여 최소 절단값을 찾는 유동-기반 알고리즘이 적용되고 있다. 이 알고리즘은 최소절단은 제시하지 않는 단점이 있다. 본 논문은 유동망을 구하지 않고 망으로부터 직접 최대 수용량을 가진 정점을 인접한 S 또는 T로 병합하는 방법으로 최소 절단값을 찾는 간단한 알고리즘이다. 13개의 한정된 그래프에 적용한 결과 제안된 알고리즘은 간단하면서도 정확하게 최소 절단 값 $_{\min}c$(S, T)을 찾을 수 있었다.

분산 환경에서 그래프 질의 수행을 위한 그래프 분할 기법 조사 (A Study on Graph Partitioning for Graph Query Processing in Distributed System)

  • 이원석;고성윤;서명원;이정훈;한욱신
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.734-736
    • /
    • 2019
  • 그래프 분할 기법은 분산 환경에서 그래프 질의 수행에 있어 통신 비용을 줄이고 부하 균형을 맞추고자 그래프의 정점과 간선들을 여러 머신들에 나누어 저장하는 방법이다. 본 논문에서는 그래프 질의 수행에 관한 지식을 정리하고, 간선 절단 기법(edge-cut), 정점 절단 기법(vertex-cut), 하이브리드 절단 기법(hybrid-cut)으로 알려진 대표적인 그래프 분할 기법과 최신 그래프 시스템들의 그래프 분할 기법을 소개하고 비교한다.

2-간선 연결 그래프를 사용한 최소신장트리 알고리즘 제안 (Proposal of Minimum Spanning Tree Algorithm using 2-Edges Connected Grap)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.233-241
    • /
    • 2014
  • 본 논문은 원 그래프를 2-간선 연결 그래프로 단순화하고, 사이클 속성을 적용하여 최소신장트리를 빠르게 얻는 알고리즘을 제안하였다. Borůvka 알고리즘은 정점 (v) 당 최소 가중치 간선 (v) 을 1개씩 선택하는 1-간선 연결 그래프에 대해 사이클 속성을 적용하여 부분신장트리를 얻는다. 추가적으로 절단속성을 적용하여 부분신장트리를 연결하는 최소 가중치 간선을 선택한다. Kruskal 알고리즘은 그래프의 모든 간선을 대상으로 오름차순으로 절단 속성을 적용한다. 역-삭제 알고리즘은 내림차순으로 사이클 속성을 적용한다. Borůvka, Kruskal과 역-삭제 알고리즘은 모든 간선들을 대상으로 하기 때문에 항상 |e| 회 수행된다. 제안된 알고리즘은 첫 번째로, 정점 당 최소 가중치 간선을 2개씩 선택하는 2-간선 연결 그래프를 얻는다. 두 번째로, 2-간선 연결 그래프에 대해 사이클 속성을 적용하여 |e|=|v|-1 일 때 알고리즘을 종료시켰다. 제안된 방법들을 10개의 실제 그래프들에 적용한 결과 모두 최소신장트리를 얻는데 성공하였다. 또한, Borůvka, Kruskal과 역-삭제 알고리즘에 비해 수행 횟수를 60% 단축시켰다.

MINIMUM RANK OF THE LINE GRAPH OF CORONA CnoKt

  • Im, Bokhee;Lee, Hwa-Young
    • 대한수학회논문집
    • /
    • 제30권2호
    • /
    • pp.65-72
    • /
    • 2015
  • The minimum rank mr(G) of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose (i, j)-th entry (for $i{\neq}j$) is nonzero whenever {i, j} is an edge in G and is zero otherwise. The corona $C_n{\circ}K_t$ is obtained by joining all the vertices of the complete graph $K_t$ to each n vertex of the cycle $C_n$. For any t, we obtain an upper bound of zero forcing number of $L(C_n{\circ}K_t)$, the line graph of $C_n{\circ}K_t$, and get some bounds of $mr(L(C_n{\circ}K_t))$. Specially for t = 1, 2, we have calculated $mr(L(C_n{\circ}K_t))$ by the cut-vertex reduction method.

EDGE PROPERTIES OF THE 4-VALENT MULTI 3-GON GRAPHS

  • Jeong, Dal-Young
    • 대한수학회논문집
    • /
    • 제19권3호
    • /
    • pp.577-584
    • /
    • 2004
  • In a 4-valent multi 3-gon graph, every cut-through curve forms a simple closed circuit. Hence it is a weak arrangement of simple curves that is defined by Branko Grunbaum. In this paper, we study the edge properties of the 4-valent multi 3-gon graphs from the point of view of arrangement, and we show that they are 3 colorable.