• Title/Summary/Keyword: customer reviews

Search Result 282, Processing Time 0.033 seconds

A Study on Customer Satisfaction of Mobile Shopping Apps Using Topic Analysis of User Reviews (사용자 리뷰 토픽분석을 활용한 모바일 쇼핑 앱 고객만족도에 관한 연구)

  • Kim, Kwang-Kook;Kim, Yong-Hwan;Kim, Ja-Hee
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.4
    • /
    • pp.41-62
    • /
    • 2018
  • Despite the rapid growth of the mobile shopping market, major market participants are continuing to suffer operating losses due to severe competition. To solve this problem, the mobile shopping market requires research to improve customer satisfaction and customer loyalty rather than excessive competition. However, the existing studies have limits to reflect the direct needs of customers because they extract the factors on the basis of the Technology Acceptance Model and the literature study. In this study, to reflect the direct requirements of users of mobile shopping Apps, we derived concretely and various factors influencing customer satisfaction through a topic analysis using user reviews. And then we assessed the importance of derived factors to customer satisfaction and analyzed the effects of customer satisfaction on customer complaints and customer loyalty on a structural equation model based on the American customer satisfaction index. We expect that our framework linking a topic analysis and a structural equation model is to be applicable to studies on the customer satisfaction of other mobile services.

Online Word-of-Mouth: Motivation for Writing Product Reviews on Internet Shopping Sites (온라인 구전 커뮤니케이션: 온라인 쇼핑몰에서의 소비자 사용후기 작성동기)

  • Kim, Sung-Hee
    • Journal of Fashion Business
    • /
    • v.14 no.2
    • /
    • pp.81-94
    • /
    • 2010
  • The online shopping environment has radically changed consumer shopping behavior. Without the actual physical shopping experience in a brick-and-mortar store, consumers make purchasing decisions over the Internet. They make an effort to obtain product information not only from online merchants, but also from previous purchasers in order to make an informed decision. Accordingly, customer comments are expected to have a significant impact on decisions to purchase goods and services online. This paper focuses on one type of electronic word-of-mouth, the online consumer review. It derives several motivations why customers post product reviews on shopping mall sites. Customer motives were identified through an in depth one-on-one interview with twenty female respondents conducted twice from June $17^{th}$ to September $11^{th}$, 2009. The interviews lasted between 40 and 60 minutes. The results showed that consumers write product reviews based on six motivations: to receive a reward or remuneration for writing a product review, to share information with other customers, to improve the quality of goods and services, to reduce customer dissatisfaction, to recommend products and services, and to derive pleasure.

A Study on the Impact of Chinese Online Customer Reviews on Consumer Purchase Behavior in Online Education Platforms

  • Shuang Guo;Yumi Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.139-148
    • /
    • 2024
  • In the post-pandemic era, the demand for online education platforms has surged, leading to increased consumer reliance on online reviews for decision-making. This study investigates the impact of Chinese online customer reviews on consumer purchase behavior in online education. By examining the role of trust, review sentiment, and the quantity and timeliness of reviews, the research aims to understand how these factors influence consumer decisions. By using regression model, findings reveal that negative reviews, timely feedback, and a higher volume of reviews positively affect consumer purchase decisions, while course pricing demonstrates an inverse relationship. Furthermore, cognitive and affective trust mediate the relationship between reviews and purchase behavior, highlighting a reverse U-shaped effect on consumer decision inclination. These insights provide valuable implications for online education providers, emphasizing the need to manage and leverage online reviews to foster consumer trust and improve sales performance.

Investigating the Value of Information in Mobile Commerce: A Text Mining Approach

  • Wang, Ying;Aguirre-Urreta, Miguel;Song, Jaeki
    • Asia pacific journal of information systems
    • /
    • v.26 no.4
    • /
    • pp.577-592
    • /
    • 2016
  • The proliferation of mobile applications and the unique characteristics of the mobile environment have attracted significant research interest in understanding customers' purchasing behaviors in mobile commerce. In this study, we extend customer value theory by combining the predictors of product performance with customer value framework to investigate how in-store information creates value for customers and influences mobile application downloads. Using a data set collected from the Google Application Store, we find that customers value both text and non-text information when they make downloading decisions. We apply latent semantic analysis techniques to analyze customer reviews and product descriptions in the mobile application store and determine the embedded valuable information. Results show that, for mobile applications, price, number of raters, and helpful information in customer reviews and product descriptions significantly affect the number of downloads. Conversely, average rating does not work in the mobile environment. This study contributes to the literature by revealing the role of in-store information in mobile application downloads and by providing application developers with useful guidance about increasing application downloads by improving in-store information management.

Customer Service Evaluation based on Online Text Analytics: Sentiment Analysis and Structural Topic Modeling

  • Park, KyungBae;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.26 no.4
    • /
    • pp.327-353
    • /
    • 2017
  • Purpose Social media such as social network services, online forums, and customer reviews have produced a plethora amount of information online. Yet, the information deluge has created both opportunities and challenges at the same time. This research particularly focuses on the challenges in order to discover and track the service defects over time derived by mining publicly available online customer reviews. Design/methodology/approach Synthesizing the streams of research from text analytics, we apply two stages of methods of sentiment analysis and structural topic model incorporating meta-information buried in review texts into the topics. Findings As a result, our study reveals that the research framework effectively leverages textual information to detect, prioritize, and categorize service defects by considering the moving trend over time. Our approach also highlights several implications theoretically and practically of how methods in computational linguistics can offer enriched insights by leveraging the online medium.

Analyzing the Effect of Trust in Reviews on Trust in a Product and a Company: Using the Trust Transfer Theory

  • Namjae Cho;Xiaochen Li;Giseob Yu
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.1
    • /
    • pp.57-77
    • /
    • 2024
  • The aim of this research is to examine the impact of trust in reviews. Expertise, enjoyment, recency, and usefulness-four aspects of reviews-are designated as independent variables, and trust in reviews has been chosen as the mediating variable. The dependent variables are trust in firms and trust in products. For explaining the flow of trust, this study uses the theory of Trust Transfer. The study's findings demonstrated that customer trust in a product leads to consumer trust in a company, which is derived from trust in reviews. Reviews were found to be important from a practical standpoint. Furthermore, it was discovered that a product's category or features would have an impact on how reviews are trusted.

Multilayer Knowledge Representation of Customer's Opinion in Reviews (리뷰에서의 고객의견의 다층적 지식표현)

  • Vo, Anh-Dung;Nguyen, Quang-Phuoc;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.652-657
    • /
    • 2018
  • With the rapid development of e-commerce, many customers can now express their opinion on various kinds of product at discussion groups, merchant sites, social networks, etc. Discerning a consensus opinion about a product sold online is difficult due to more and more reviews become available on the internet. Opinion Mining, also known as Sentiment analysis, is the task of automatically detecting and understanding the sentimental expressions about a product from customer textual reviews. Recently, researchers have proposed various approaches for evaluation in sentiment mining by applying several techniques for document, sentence and aspect level. Aspect-based sentiment analysis is getting widely interesting of researchers; however, more complex algorithms are needed to address this issue precisely with larger corpora. This paper introduces an approach of knowledge representation for the task of analyzing product aspect rating. We focus on how to form the nature of sentiment representation from textual opinion by utilizing the representation learning methods which include word embedding and compositional vector models. Our experiment is performed on a dataset of reviews from electronic domain and the obtained result show that the proposed system achieved outstanding methods in previous studies.

  • PDF

Effect of Korean Michelin Guide Review Features on Customer Satisfaction Using LIWC

  • KIM, Yoon Ji;KIM, Su Sie;CHA, Seong Soo
    • The Journal of Industrial Distribution & Business
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2023
  • Purpose: This study aims to analysis the difference by Michelin rating in customer satisfaction of restaurant listed in the Korea Michelin Guide. There are opinions that the Michelin Guide's rating system and evaluation criteria are somewhat ambiguous. Research design, data, and methodology: This study collected 145 actual online reviews published on TripAdvisor to examine how the effect of the content attributes of reviews on consumer satisfaction varies according to the Michelin grade. Based on this, two studies were conducted. Study 1 examined the effect of strong and weak positive reviews on consumer satisfaction according to the rating. Study 2 examined the effect of image information on consumer satisfaction. Results: The results revealed that the lower the Michelin rating, the more positive review had a significant effect on consumer satisfaction. The higher the rating, the more image information had an effect on consumer satisfaction. Expectations for Michelin three-star restaurants are higher than those of two-star restaurants, so customers are more likely to be used negatively when writing reviews. Conclusions: Accurate information on Michelin selection criteria should be delivered so as not to form high expectations and not to disappoint. For consumers to be satisfied with the name Michelin, the standards should be stricter.

The Detection of Well-known and Unknown Brands' Products with Manipulated Reviews Using Sentiment Analysis

  • Olga Chernyaeva;Eunmi Kim;Taeho Hong
    • Asia pacific journal of information systems
    • /
    • v.31 no.4
    • /
    • pp.472-490
    • /
    • 2021
  • The detection of products with manipulated reviews has received widespread research attention, given that a truthful, informative, and useful review helps to significantly lower the search effort and cost for potential customers. This study proposes a method to recognize products with manipulated online customer reviews by examining the sequence of each review's sentiment, readability, and rating scores by product on randomness, considering the example of a Russian online retail site. Additionally, this study aims to examine the association between brand awareness and existing manipulation with products' reviews. Therefore, we investigated the difference between well-known and unknown brands' products online reviews with and without manipulated reviews based on the average star rating and the extremely positive sentiment scores. Consequently, machine learning techniques for predicting products are tested with manipulated reviews to determine a more useful one. It was found that about 20% of all product reviews are manipulated. Among the products with manipulated reviews, 44% are products of well-known brands, and 56% from unknown brands, with the highest prediction performance on deep neural network.

Analysis on Review Data of Restaurants in Google Maps through Text Mining: Focusing on Sentiment Analysis

  • Shin, Bee;Ryu, Sohee;Kim, Yongjun;Kim, Dongwhan
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.61-68
    • /
    • 2022
  • The importance of online reviews is prevalent as more people access goods or places online and make decisions to visit or purchase. However, such reviews are generally provided by short sentences or mere star ratings; failing to provide a general overview of customer preferences and decision factors. This study explored and broke down restaurant reviews found on Google Maps. After collecting and analyzing 5,427 reviews, we vectorized the importance of words using the TF-IDF. We used a random forest machine learning algorithm to calculate the coefficient of positivity and negativity of words used in reviews. As the result, we were able to build a dictionary of words for positive and negative sentiment using each word's coefficient. We classified words into four major evaluation categories and derived insights into sentiment in each criterion. We believe the dictionary of review words and analyzing the major evaluation categories can help prospective restaurant visitors to read between the lines on restaurant reviews found on the Web.