• Title/Summary/Keyword: customer reviews

Search Result 282, Processing Time 0.025 seconds

Your Expectation Matters When You Read Online Consumer Reviews: The Review Extremity and the Escalated Confirmation Effect

  • Lee, Jung;Lee, Hong Joo
    • Asia pacific journal of information systems
    • /
    • v.26 no.3
    • /
    • pp.449-476
    • /
    • 2016
  • This study examines how an initially perceived product value affects consumer's purchase intention after reading online reviews with various tones. The study proposes that associations among initially perceived overall product value, degree of confirmation resulting from reading the reviews, and final purchase intention differ across review tones such that 1) when the tone is favorable, the effect of an initially perceived product value is stronger than when the tone is critical, and 2) when the tone is extreme, the effect of confirmation is stronger than when the tone is moderate. The survey was conducted with 276 online shopping mall users in Korea, and most of the hypotheses were supported. This study asserts that the effects of online reviews should be considered together with customer's level of expectation formed prior to reading online reviews, which resulted from extensive search and screening processes that the customer went through before reading online reviews.

Measuring Hotel Service Quality Using Social Media Analytics: The Moderating Effects of Brand of Origin

  • Byounggu Choi;Shin-Hyeok Kang
    • Asia pacific journal of information systems
    • /
    • v.33 no.3
    • /
    • pp.677-701
    • /
    • 2023
  • With the rapid advancement of social media analytics and artificial intelligence, many studies have used online customer reviews as an important source to measure service quality in many industries, including the hotel industry. However, these studies have failed to identify the relative importance of different dimensions of service quality and their role in customer satisfaction. To fill this research gap, this study aims to identify the effects of service quality on hotel customer satisfaction from the multidimensional perspectives using sentiment analysis with self-training on online reviews. Additionally, the moderating role of the brand of origin for each service quality dimension is also investigated. Drawing on the SERVQUAL model and brand of origin concept, this study develops 12 hypotheses and empirically tests them using 30,070 online customer hotel reviews collected from TripAdvisor.com. The results indicated that overall service quality and each dimension of SERVQUAL significantly influenced customer satisfaction of hotels. The results also confirmed the moderating effects of brand of origin on overall service quality. However, the moderating effects of brand of origin for the tangible, reliability, and empathy dimensions of service quality were significant, whereas the effects for responsiveness and assurance were not. This study sheds new light on service quality measurement by analyzing the multidimensional features of service quality and the role of brand of origin in the hotel service context.

Methodology for Applying Text Mining Techniques to Analyzing Online Customer Reviews for Market Segmentation (온라인 고객리뷰 분석을 통한 시장세분화에 텍스트마이닝 기술을 적용하기 위한 방법론)

  • Kim, Keun-Hyung;Oh, Sung-Ryoel
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.272-284
    • /
    • 2009
  • In this paper, we proposed the methodology for analyzing online customer reviews by using text mining technologies. We introduced marketing segmentation into the methodology because it would be efficient and effective to analyze the online customers by grouping them into similar online customers that might include similar opinions and experiences of the customers. That is, the methodology uses categorization and information extraction functions among text mining technologies, matched up with the concept of market segmentation. In particular, the methodology also uses cross-tabulations analysis function which is a kind of traditional statistics analysis functions to derive rigorous results of the analysis. In order to confirm the validity of the methodology, we actually analyzed online customer reviews related with tourism by using the methodology.

Analyzing Online Customer Reviews for the Hotel Classification in Vietnam

  • NGUYEN, Ha Thi Thu;TRAN, Tuan Minh;NGUYEN, Giang Binh
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.8
    • /
    • pp.443-451
    • /
    • 2021
  • The classification standards for hotels in Vietnam are different from many other hotel classification standards in the world. This study aims to analyze customer reviews on the TripAdvisor website to develop a new algorithm for hotel rating that is independent of Vietnam's hotel classification standards. This method can be applied to individual hotels, or hotels of a region or the whole country, while online booking sites only rate individual hotels. Data was crawled from TripAdvisor with 22,287 reviews of 5 cities in Vietnam. This study used a statistical model to analyze the review dataset and build an algorithm to rate hotels according to aspects or hotel overall. The results have less rating deviation when compared to the TripAdvisor system. This study also supports hotel managers to regularly update the status of their hotels using data from customer reviews, from which, managers can strategize long-term solutions to improve the quality of the hotel in all aspects and attract more travelers to Vietnam. Moreover, this method can be developed into an automatic system to rate hotels and update the status of service quality more quickly, thus, saving time and costs.

Topics and Sentiment Analysis Based on Reviews of Omni-Channel Retailing

  • KIM, Soon-Hong;YOO, Byong-Kook
    • Journal of Distribution Science
    • /
    • v.19 no.4
    • /
    • pp.25-35
    • /
    • 2021
  • Purpose: This study aims to analyze the factors affecting customer satisfaction in the customer reviews of omni-channel, posted on Internet blogs, cafes, and YouTube using text mining analysis. Research, data, and Methodology: In this study, frequency analysis is performed and the LDA (Latent Dirichlet Allocation) is used to analyze social big data to respond to reviewers' reaction to the recently opened omni-channel shopping reviews by L Shopping Company. Additionally, based on the topic analysis, we conduct a sentiment analysis on purchase reviews and analyze the characteristics of each topic on the positive or negative sentiments of omni-channel app users. Results: As a result of a topic analysis, four main topics are derived: delivery and events, economic value, recommendations and convenience, and product quality and brand awareness. The emotional analysis reveals that the reviewers have many positive evaluations for price policy and product promotion, but negative evaluations for app use, delivery, and product quality. Conclusions: Retailers can establish customized marketing strategies by identifying the customer's major interests through text mining analysis. Additionally, the analysis of sentiment by subject becomes an important indicator for developing products and services that customers want by identifying areas that satisfy customers and areas that evoke negative reactions.

Consumer Experience and Management Response Under the Impact of COVID-19 Crisis

  • Hyunsoo YOO
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.2
    • /
    • pp.25-33
    • /
    • 2024
  • This study examines the relationship between customer satisfaction and management response in the hotel industry amid the COVID-19 pandemic. By applying regression analysis and topic modeling to consumer reviews on online platforms, we assess how consumer perceptions and management behaviors have shifted since the onset of the pandemic. The findings reveal a significant decline in customer satisfaction linked to COVID-19. Significantly, while the pandemic has reduced overall customer satisfaction levels, high response rates and high review-response content similarity mitigate the impact of the crises. These results highlight the critical need for hotel managers to continuously monitor online reviews and adapt their engagement strategies to maintain and enhance customer satisfaction during ongoing and future crises. This research not only corroborates existing theories on customer satisfaction but also exposes novel dynamics introduced by the pandemic, offering new insights for effective customer relationship management in turbulent times.

The Effects of Sentiment and Readability on Useful Votes for Customer Reviews with Count Type Review Usefulness Index (온라인 리뷰의 감성과 독해 용이성이 리뷰 유용성에 미치는 영향: 가산형 리뷰 유용성 정보 활용)

  • Cruz, Ruth Angelie;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.43-61
    • /
    • 2016
  • Customer reviews help potential customers make purchasing decisions. However, the prevalence of reviews on websites push the customer to sift through them and change the focus from a mere search to identifying which of the available reviews are valuable and useful for the purchasing decision at hand. To identify useful reviews, websites have developed different mechanisms to give customers options when evaluating existing reviews. Websites allow users to rate the usefulness of a customer review as helpful or not. Amazon.com uses a ratio-type helpfulness, while Yelp.com uses a count-type usefulness index. This usefulness index provides helpful reviews to future potential purchasers. This study investigated the effects of sentiment and readability on useful votes for customer reviews. Similar studies on the relationship between sentiment and readability have focused on the ratio-type usefulness index utilized by websites such as Amazon.com. In this study, Yelp.com's count-type usefulness index for restaurant reviews was used to investigate the relationship between sentiment/readability and usefulness votes. Yelp.com's online customer reviews for stores in the beverage and food categories were used for the analysis. In total, 170,294 reviews containing information on a store's reputation and popularity were used. The control variables were the review length, store reputation, and popularity; the independent variables were the sentiment and readability, while the dependent variable was the number of helpful votes. The review rating is the moderating variable for the review sentiment and readability. The length is the number of characters in a review. The popularity is the number of reviews for a store, and the reputation is the general average rating of all reviews for a store. The readability of a review was calculated with the Coleman-Liau index. The sentiment is a positivity score for the review as calculated by SentiWordNet. The review rating is a preference score selected from 1 to 5 (stars) by the review author. The dependent variable (i.e., usefulness votes) used in this study is a count variable. Therefore, the Poisson regression model, which is commonly used to account for the discrete and nonnegative nature of count data, was applied in the analyses. The increase in helpful votes was assumed to follow a Poisson distribution. Because the Poisson model assumes an equal mean and variance and the data were over-dispersed, a negative binomial distribution model that allows for over-dispersion of the count variable was used for the estimation. Zero-inflated negative binomial regression was used to model count variables with excessive zeros and over-dispersed count outcome variables. With this model, the excess zeros were assumed to be generated through a separate process from the count values and therefore should be modeled as independently as possible. The results showed that positive sentiment had a negative effect on gaining useful votes for positive reviews but no significant effect on negative reviews. Poor readability had a negative effect on gaining useful votes and was not moderated by the review star ratings. These findings yield considerable managerial implications. The results are helpful for online websites when analyzing their review guidelines and identifying useful reviews for their business. Based on this study, positive reviews are not necessarily helpful; therefore, restaurants should consider which type of positive review is helpful for their business. Second, this study is beneficial for businesses and website designers in creating review mechanisms to know which type of reviews to highlight on their websites and which type of reviews can be beneficial to the business. Moreover, this study highlights the review systems employed by websites to allow their customers to post rating reviews.

Can Generative AI Replace Human Managers? The Effects of Auto-generated Manager Responses on Customers (생성형 AI는 인간 관리자를 대체할 수 있는가? 자동 생성된 관리자 응답이 고객에 미치는 영향)

  • Yeeun Park;Hyunchul Ahn
    • Knowledge Management Research
    • /
    • v.24 no.4
    • /
    • pp.153-176
    • /
    • 2023
  • Generative AI, especially conversational AI like ChatGPT, has recently gained traction as a technological alternative for automating customer service. However, there is still a lack of research on whether current generative AI technologies can effectively replace traditional human managers in customer service automation, and whether they are advantageous in some situations and disadvantageous in others, depending on the conditions and environment. To answer the question, "Can generative AI replace human managers in customer service activities?", this study conducted experiments and surveys on customer online reviews of a food delivery platform. We applied the perspective of the elaboration likelihood model to generate hypotheses about whether there is a difference between positive and negative online reviews, and analyzed whether the hypotheses were supported. The analysis results indicate that for positive reviews, generative AI can effectively replace human managers. However, for negative reviews, complete replacement is challenging, and human managerial intervention is considered more desirable. The results of this study can provide valuable practical insights for organizations looking to automate customer service using generative AI.

The Effects of Online Product Reviews on Sales Performance: Focusing on Number, Extremity, and Length

  • PARK, Sunju;CHUNG, Seungwha (Andy);LEE, Seungyong
    • Journal of Distribution Science
    • /
    • v.17 no.5
    • /
    • pp.85-94
    • /
    • 2019
  • Purpose - The purpose of this study is to analyze the impact of customer's communication on sales performance in the online market. Research design, data, and methodology - This study uses linear regression analysis to examine the effects of product review characteristics which are the result of customer's communication, on sales performance by using product reviews of online marketplace Amazon. Result - The increase in the number of product reviews positively affected sales performance. An increase in extreme opinions in the product review has a positive effect on sales performance. The product review length has a negative effect on sales performance. Conclusions - This study has shown the online marketplace customers' communication can influence sales performance using product review big data. This study contributed to the theoretical completeness by analyzing all the products of the book category in Amazon online market. This research will complement the theories regard to the customer behavior affecting sales performance. We expect the empirical analysis result will provide empirical help to sellers, online marketplace operators, and customers. In particular, the number of letters in the product may negatively affect sales performance, so sellers need to consider this effect carefully when exposing product reviews.

Multi-Topic Sentiment Analysis using LDA for Online Review (LDA를 이용한 온라인 리뷰의 다중 토픽별 감성분석 - TripAdvisor 사례를 중심으로 -)

  • Hong, Tae-Ho;Niu, Hanying;Ren, Gang;Park, Ji-Young
    • The Journal of Information Systems
    • /
    • v.27 no.1
    • /
    • pp.89-110
    • /
    • 2018
  • Purpose There is much information in customer reviews, but finding key information in many texts is not easy. Business decision makers need a model to solve this problem. In this study we propose a multi-topic sentiment analysis approach using Latent Dirichlet Allocation (LDA) for user-generated contents (UGC). Design/methodology/approach In this paper, we collected a total of 104,039 hotel reviews in seven of the world's top tourist destinations from TripAdvisor (www.tripadvisor.com) and extracted 30 topics related to the hotel from all customer reviews using the LDA model. Six major dimensions (value, cleanliness, rooms, service, location, and sleep quality) were selected from the 30 extracted topics. To analyze data, we employed R language. Findings This study contributes to propose a lexicon-based sentiment analysis approach for the keywords-embedded sentences related to the six dimensions within a review. The performance of the proposed model was evaluated by comparing the sentiment analysis results of each topic with the real attribute ratings provided by the platform. The results show its outperformance, with a high ratio of accuracy and recall. Through our proposed model, it is expected to analyze the customers' sentiments over different topics for those reviews with an absence of the detailed attribute ratings.