Journal of Korea Society of Digital Industry and Information Management
/
v.8
no.1
/
pp.191-205
/
2012
A book review is one of the most important sources of information which provide the descriptive and evaluative contents about books. Reviews have great influence on consumer behavior because they are believed to be more reliable than information provided by sellers. Readers who read a book review includes information about book decide whether they will buy or not. This study examines customer attitude change by book reviews with regarding to different type of information sources(experts and prior customers) and different directions of messages. We address the following research questions: (1) Can positive book reviews with credibility have a positive impact on acceptance of books? (2) Can negative book reviews with credibility have a negative impact on acceptance of books? The results shows that a credibility is an essential factor for affecting customers' mind. When positive book reviews were written, both expert and customer opinions have a positive impact on acceptance of customers. Given negative book reviews of experts, trustworthiness is more important than expertise. However, a objectivity of customer's reviews is more important.
Purpose: The primary purpose of this study is to integrate text mining and Quality Function Deployment (QFD) to automatically extract valuable information from customer reviews, thereby establishing a QFD frame- work to confirm genuine customer needs for New Product Development (NPD). Methods: Our approach combines text mining and QFD through topic modeling and sentiment analysis on a large data set of 56,873 customer reviews from Zappos.com, spanning five running shoe brands. This process objectively identifies customer requirements, establishes priorities, and assesses competitive strengths. Results: Through the analysis of customer reviews, the study successfully extracts customer requirements and translates customer experience insights and emotions into quantifiable indicators of competitiveness. Conclusion: The findings obtained from this research offer essential design guidance for new product develop- ment endeavors. Importantly, the significance of these results extends beyond the running shoe industry, presenting broad and promising applications across diverse sectors.
Purpose Customer review is a major factor in choosing certain restaurants. This study investigates the key factors affecting customer's evaluation about restaurants. With the recent intensification of competition among restaurants in the service industry, the analysis results are expected to provide in-depth insights for enhancing customer experiences. Design/methodology/approach We collected information and reviews provided at the restaurants in the Kakao Map platform. The information collected is based on the information of 3,785 restaurants in Daegu registered on Kakao Map. Based on the information collected, seven independent variables, including number of rating registered, number of reviews, presence or absence of safe restaurants, presence or absence of a posting about holding facilities, presence or absence of a posting about business hours, presence or absence of a posting about hashtags, and presence or absence of break times, were used. Dependent variable is restaurant rating. Multiple regression between independent variables and restaurant rating was carried out. Findings The results of the study confirmed that number of rating registered, presence or absence of a posting about business hours, and presence or absence of a posting about hash tags have an positive effects on the restaurant rating. The number of reviews had a negative effect on the restaurant rating. In addition, in order to confirm the role of customer's reviews, we carried out LDA topic modeling. We divided the topics into the positive review and the negative reviews.
Lim, Young Seo;Lee, So Yeong;Lee, Ji Na;Ryu, Bo Kyung;Kim, Hyon Hee
KIPS Transactions on Software and Data Engineering
/
v.9
no.9
/
pp.259-266
/
2020
In this paper, we propose a novel scheme for product effect analysis, termed PEM, to find out the effectiveness of products used for improving the current condition, such as health supplements and cosmetics, by utilizing online customer reviews. The proposed technique preprocesses online customer reviews to remove advertisements automatically, constructs the word dictionary composed of symptoms, effects, increases, and decreases, and measures products' effects from online customer reviews. Using Naver Shopping Review datasets collected through crawling, we evaluated the performance of PEM compared to those of two methods using traditional sentiment dictionary and an RNN model, respectively. Our experimental results shows that the proposed technique outperforms the other two methods. In addition, by applying the proposed technique to the online customer reviews of atopic dermatitis and acne, effective treatments for them were found appeared on online social media. The proposed product effect analysis technique presented in this paper can be applied to various products and social media because it can score the effect of products from reviews of various media including blogs.
With the development of modern society, not only have the Internet and e-commerce been progressed but they also made 'consumption patten' diverse. Despite the internet clothing market growth, there is critical a disadvantage, which is consumers is not able to wear the products presented via online pictures. Thus, pictures on the internet are the only information customers can get, which has caused consciousness on the importance of dealing with 'customer review'. In spite of the fact that 'customer review' has undeniably evolved to be one of customers' essential requisites, the research on this subject is very limited. Until now, the studies on the internet shopping consumers' behavior mostly has to do with the features of 'customer review' such as 'a sense of exaggeration', 'usability', 'duality', 'purity', 'professionalism', 'reliability', and the 'similarity', etc.) Therefore, this study categorizes the characteristics of online shopping reviews to 'the number of reviews', 'the article-length', 'the existence of photos', 'the rewards for reviews', 'the contents of the reviews' and 'the freshness of the reviews' and reviews the impact of an features of 'customers' reviews' affecting the internet shopping sales promotion. Moreover, it is to contribute to the marketing strategies of a shopping mall by analyzing consumers' 'purchasing satisfaction', 'the intention of repurchasing', and 'the factors of viral marketing'.
Proceedings of the Korea Society for Industrial Systems Conference
/
2007.02a
/
pp.202-208
/
2007
As one of the key strategic resources, the customer knowledge not only improves the performance of customer relationship management, but fosters the sustained competitive advantages as it creates values for customers with customer knowledge management. On the basis of the general introduction of research on customer knowledge management, this paper develops the research on customer knowledge management from the perspective of strategic management, and discusses further relevant studies concerning concepts of customer knowledge and customer knowledge management, studying perspectives, key questions as well as development directions for research, and so on.
Hotels have recently started to implement enterprise information systems to measure and report sustainability indicators in a smart manner. However, a complex ownership structure in a hotel chain prevents full smart systems adoption at the individual property level. This study explores how a smart sustainability performance measurement system (SPMS) for waste management adoption correlates with customer ratings, customer reviews, operational efficiency scores, and between franchised and corporate-managed properties. We derive insights from the secondary data constructed from multiple sources for a large multinational hotel chain hotel. The findings suggest that hotels that adopt SPMS have better operational efficiency scores and more customer reviews. Within the hotels that adopted SPMS, corporate-managed hotels have a lower level of ratings than franchised hotels, but they have higher operational efficiency scores and more reviews. We discuss research implications for the concept of smart tourism and hotel management literature and managerial implications.
Among the customer-oriented data used to comprehend the customer, the user review data has received much attention as it provides insights into customer opinion in a detailed and large-scale manner; many customers have come to rely upon and trust the user reviews. Many application developers are cognizant of the importance of user reviews, so they monitor and respond to these reviews. However, due to the absence of a systematic method, developers have been investing their time and money without clear correlation to the customer satisfaction. Therefore, this paper suggests a systematic method to select user reviews from the application market using the Kano Model that deals with customer satisfaction and service quality, thereby maximizing the customer satisfaction under the given time period and budget. This method is constructed in the following phases: the user review collection and requirement elicitation phase in which the developers collect user reviews from the application market and elicit requirements, the Kano Model application and selection phase in which the Kano Model is applied to the elicited requirements and selection occurs based on the quality type, and the stakeholder review and redefinition phase in which relevant personnel gather to review and redefine requirements from an internal perspective.
With the advent of SNS (Social Network Services), the product reviews by friends in SNS are intensively utilized for online marketing. However, there is a lack of empirical evidence on the actual marketing effect of SNS reviews, although we need to identify who can be the target of SNS marketing in terms of customer attributes, preferences, or experiences. In this study, we investigate the moderating role of customer attributes in identifying the effect of SNS reviews on customer purchasing decision. As the moderating variables, we adopt 'information search experience' and 'perception of information overload'. Research results evidence that, in order to understand the effect of SNS reviews in a comprehensive manner, we need to examine it in the context of various related factors such as 'information search experience' and 'perception of information overload'. The results show that the persuading effect of SNS reviews for product purchasing is stronger for the customers with the lower information search experiences as well as the lower perception on the information overload on the web. This result delivers managerial implications on who can be the target customers of SNS marketing.
From the past to the present, reviews have had much influence on consumers' purchasing decisions. Companies are making various efforts, such as introducing a review incentive system to increase the number of reviews. Recently, as various types of reviews can be left, reviews have begun to be recognized as interesting new content. This way, reviews have become essential in creating loyal customers. Therefore, research and utilization of reviews are being actively conducted. Some studies analyze reviews to discover customers' needs, studies that upgrade recommendation systems using reviews, and studies that analyze consumers' emotions and attitudes through reviews. However, research that predicts the future using reviews is insufficient. This study used a dataset consisting of two reviews written in pairs with differences in usage periods. In this study, the direction of consumer product evaluation is predicted using KoBERT, which shows excellent performance in Text Deep Learning. We used 7,233 reviews collected to demonstrate the excellence of the proposed model. As a result, the proposed model using the review text and the star rating showed excellent performance compared to the baseline that follows the majority voting.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.