• Title/Summary/Keyword: customer reviews

Search Result 282, Processing Time 0.026 seconds

The Credibility of Online Book Review on Customer's Purchasing Decision (온라인 북 리뷰 공신력의 구매 수용자 의사결정에 미치는 영향)

  • Choi, Jae Young;Choi, Jae Woong;Han, Man Yong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.191-205
    • /
    • 2012
  • A book review is one of the most important sources of information which provide the descriptive and evaluative contents about books. Reviews have great influence on consumer behavior because they are believed to be more reliable than information provided by sellers. Readers who read a book review includes information about book decide whether they will buy or not. This study examines customer attitude change by book reviews with regarding to different type of information sources(experts and prior customers) and different directions of messages. We address the following research questions: (1) Can positive book reviews with credibility have a positive impact on acceptance of books? (2) Can negative book reviews with credibility have a negative impact on acceptance of books? The results shows that a credibility is an essential factor for affecting customers' mind. When positive book reviews were written, both expert and customer opinions have a positive impact on acceptance of customers. Given negative book reviews of experts, trustworthiness is more important than expertise. However, a objectivity of customer's reviews is more important.

Topic Modeling-based QFD Framework for Comparative Analysis between Competitive Products (경쟁 제품 간 비교 분석을 위한 토픽 모델링 기반 품질기능전개 프레임워크)

  • Chenghe Cui;Uk Jung
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.701-713
    • /
    • 2023
  • Purpose: The primary purpose of this study is to integrate text mining and Quality Function Deployment (QFD) to automatically extract valuable information from customer reviews, thereby establishing a QFD frame- work to confirm genuine customer needs for New Product Development (NPD). Methods: Our approach combines text mining and QFD through topic modeling and sentiment analysis on a large data set of 56,873 customer reviews from Zappos.com, spanning five running shoe brands. This process objectively identifies customer requirements, establishes priorities, and assesses competitive strengths. Results: Through the analysis of customer reviews, the study successfully extracts customer requirements and translates customer experience insights and emotions into quantifiable indicators of competitiveness. Conclusion: The findings obtained from this research offer essential design guidance for new product develop- ment endeavors. Importantly, the significance of these results extends beyond the running shoe industry, presenting broad and promising applications across diverse sectors.

A Study on Key Factors Influencing Customers' Ratings of Restaurants by Using Data Mining Method (데이터 마이닝을 활용한 외식업체의 평점에 영향을 미치는 선행 요인)

  • Kim, Seon Ju;Kim, Byoung Soo
    • The Journal of Information Systems
    • /
    • v.31 no.2
    • /
    • pp.1-18
    • /
    • 2022
  • Purpose Customer review is a major factor in choosing certain restaurants. This study investigates the key factors affecting customer's evaluation about restaurants. With the recent intensification of competition among restaurants in the service industry, the analysis results are expected to provide in-depth insights for enhancing customer experiences. Design/methodology/approach We collected information and reviews provided at the restaurants in the Kakao Map platform. The information collected is based on the information of 3,785 restaurants in Daegu registered on Kakao Map. Based on the information collected, seven independent variables, including number of rating registered, number of reviews, presence or absence of safe restaurants, presence or absence of a posting about holding facilities, presence or absence of a posting about business hours, presence or absence of a posting about hashtags, and presence or absence of break times, were used. Dependent variable is restaurant rating. Multiple regression between independent variables and restaurant rating was carried out. Findings The results of the study confirmed that number of rating registered, presence or absence of a posting about business hours, and presence or absence of a posting about hash tags have an positive effects on the restaurant rating. The number of reviews had a negative effect on the restaurant rating. In addition, in order to confirm the role of customer's reviews, we carried out LDA topic modeling. We divided the topics into the positive review and the negative reviews.

A Technique for Product Effect Analysis Using Online Customer Reviews (온라인 고객 리뷰를 활용한 제품 효과 분석 기법)

  • Lim, Young Seo;Lee, So Yeong;Lee, Ji Na;Ryu, Bo Kyung;Kim, Hyon Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.9
    • /
    • pp.259-266
    • /
    • 2020
  • In this paper, we propose a novel scheme for product effect analysis, termed PEM, to find out the effectiveness of products used for improving the current condition, such as health supplements and cosmetics, by utilizing online customer reviews. The proposed technique preprocesses online customer reviews to remove advertisements automatically, constructs the word dictionary composed of symptoms, effects, increases, and decreases, and measures products' effects from online customer reviews. Using Naver Shopping Review datasets collected through crawling, we evaluated the performance of PEM compared to those of two methods using traditional sentiment dictionary and an RNN model, respectively. Our experimental results shows that the proposed technique outperforms the other two methods. In addition, by applying the proposed technique to the online customer reviews of atopic dermatitis and acne, effective treatments for them were found appeared on online social media. The proposed product effect analysis technique presented in this paper can be applied to various products and social media because it can score the effect of products from reviews of various media including blogs.

The Effect of Purchase Reviews of Internet Shopping mall on Benefits Sought of Sales Promotion, Fashion Customer's Purchase Satisfaction, Repurchase Intention, and Word-of-Mouth Intention (인터넷 쇼핑몰의 구매후기 특성이 판매촉진 추구혜택과 구매만족도, 재구매의도 및 구전의도에 미치는 영향)

  • Lee, Su-Jin;Shin, Su-Yun
    • Fashion & Textile Research Journal
    • /
    • v.16 no.1
    • /
    • pp.79-90
    • /
    • 2014
  • With the development of modern society, not only have the Internet and e-commerce been progressed but they also made 'consumption patten' diverse. Despite the internet clothing market growth, there is critical a disadvantage, which is consumers is not able to wear the products presented via online pictures. Thus, pictures on the internet are the only information customers can get, which has caused consciousness on the importance of dealing with 'customer review'. In spite of the fact that 'customer review' has undeniably evolved to be one of customers' essential requisites, the research on this subject is very limited. Until now, the studies on the internet shopping consumers' behavior mostly has to do with the features of 'customer review' such as 'a sense of exaggeration', 'usability', 'duality', 'purity', 'professionalism', 'reliability', and the 'similarity', etc.) Therefore, this study categorizes the characteristics of online shopping reviews to 'the number of reviews', 'the article-length', 'the existence of photos', 'the rewards for reviews', 'the contents of the reviews' and 'the freshness of the reviews' and reviews the impact of an features of 'customers' reviews' affecting the internet shopping sales promotion. Moreover, it is to contribute to the marketing strategies of a shopping mall by analyzing consumers' 'purchasing satisfaction', 'the intention of repurchasing', and 'the factors of viral marketing'.

Reviews on Customer Knowledge Management Researches

  • Lu, Qi-Cheng;Feng, Wei
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2007.02a
    • /
    • pp.202-208
    • /
    • 2007
  • As one of the key strategic resources, the customer knowledge not only improves the performance of customer relationship management, but fosters the sustained competitive advantages as it creates values for customers with customer knowledge management. On the basis of the general introduction of research on customer knowledge management, this paper develops the research on customer knowledge management from the perspective of strategic management, and discusses further relevant studies concerning concepts of customer knowledge and customer knowledge management, studying perspectives, key questions as well as development directions for research, and so on.

  • PDF

Adoption of Smart Sustainability Performance Measurement System (SPMS) in Hotels and Variations across Ratings, Reviews, and Operational Efficiency Scores

  • Ning, Xue;Yim, Dobin;Khuntia, Jiban
    • Journal of Smart Tourism
    • /
    • v.1 no.2
    • /
    • pp.13-18
    • /
    • 2021
  • Hotels have recently started to implement enterprise information systems to measure and report sustainability indicators in a smart manner. However, a complex ownership structure in a hotel chain prevents full smart systems adoption at the individual property level. This study explores how a smart sustainability performance measurement system (SPMS) for waste management adoption correlates with customer ratings, customer reviews, operational efficiency scores, and between franchised and corporate-managed properties. We derive insights from the secondary data constructed from multiple sources for a large multinational hotel chain hotel. The findings suggest that hotels that adopt SPMS have better operational efficiency scores and more customer reviews. Within the hotels that adopted SPMS, corporate-managed hotels have a lower level of ratings than franchised hotels, but they have higher operational efficiency scores and more reviews. We discuss research implications for the concept of smart tourism and hotel management literature and managerial implications.

User Review Selection Method using Kano Model in Application Market (어플리케이션 마켓에서 카노 모델을 이용한 사용자 리뷰 선별 방법)

  • Kim, Neunghoe
    • Journal of Industrial Convergence
    • /
    • v.18 no.2
    • /
    • pp.95-100
    • /
    • 2020
  • Among the customer-oriented data used to comprehend the customer, the user review data has received much attention as it provides insights into customer opinion in a detailed and large-scale manner; many customers have come to rely upon and trust the user reviews. Many application developers are cognizant of the importance of user reviews, so they monitor and respond to these reviews. However, due to the absence of a systematic method, developers have been investing their time and money without clear correlation to the customer satisfaction. Therefore, this paper suggests a systematic method to select user reviews from the application market using the Kano Model that deals with customer satisfaction and service quality, thereby maximizing the customer satisfaction under the given time period and budget. This method is constructed in the following phases: the user review collection and requirement elicitation phase in which the developers collect user reviews from the application market and elicit requirements, the Kano Model application and selection phase in which the Kano Model is applied to the elicited requirements and selection occurs based on the quality type, and the stakeholder review and redefinition phase in which relevant personnel gather to review and redefine requirements from an internal perspective.

Who Can be the Target of SNS Review Marketing? : A Study on the SNS Based Marketing Strategy (SNS 구매후기는 누구의 마음을 움직이는가? : 소셜 네트워크 서비스를 활용한 마케팅 전략 연구)

  • Shim, Seonyoung
    • Journal of Information Technology Services
    • /
    • v.11 no.3
    • /
    • pp.103-127
    • /
    • 2012
  • With the advent of SNS (Social Network Services), the product reviews by friends in SNS are intensively utilized for online marketing. However, there is a lack of empirical evidence on the actual marketing effect of SNS reviews, although we need to identify who can be the target of SNS marketing in terms of customer attributes, preferences, or experiences. In this study, we investigate the moderating role of customer attributes in identifying the effect of SNS reviews on customer purchasing decision. As the moderating variables, we adopt 'information search experience' and 'perception of information overload'. Research results evidence that, in order to understand the effect of SNS reviews in a comprehensive manner, we need to examine it in the context of various related factors such as 'information search experience' and 'perception of information overload'. The results show that the persuading effect of SNS reviews for product purchasing is stronger for the customers with the lower information search experiences as well as the lower perception on the information overload on the web. This result delivers managerial implications on who can be the target customers of SNS marketing.

A Methodology for Predicting Changes in Product Evaluation Based on Customer Experience Using Deep Learning (딥러닝을 활용한 고객 경험 기반 상품 평가 변화 예측 방법론)

  • An, Jiyea;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.21 no.4
    • /
    • pp.75-90
    • /
    • 2022
  • From the past to the present, reviews have had much influence on consumers' purchasing decisions. Companies are making various efforts, such as introducing a review incentive system to increase the number of reviews. Recently, as various types of reviews can be left, reviews have begun to be recognized as interesting new content. This way, reviews have become essential in creating loyal customers. Therefore, research and utilization of reviews are being actively conducted. Some studies analyze reviews to discover customers' needs, studies that upgrade recommendation systems using reviews, and studies that analyze consumers' emotions and attitudes through reviews. However, research that predicts the future using reviews is insufficient. This study used a dataset consisting of two reviews written in pairs with differences in usage periods. In this study, the direction of consumer product evaluation is predicted using KoBERT, which shows excellent performance in Text Deep Learning. We used 7,233 reviews collected to demonstrate the excellence of the proposed model. As a result, the proposed model using the review text and the star rating showed excellent performance compared to the baseline that follows the majority voting.