• Title/Summary/Keyword: cushion factor

Search Result 23, Processing Time 0.016 seconds

Quality Change of Packaged Pears in PLA Tray for Export due to Vibration Stress by Simulated Transport Environment (PLA 트레이 포장 수출용 배의 수송 모의환경 진동 스트레스에 의한 품질변화)

  • Choi, Dong-Soo;Son, Jae-Yong;Kim, Jin-Se;Kim, Yong-Hoon;Park, Chun-Wan;Hwang, Sung-Wook;Park, Jong-Min;Jung, Hyun-Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.109-114
    • /
    • 2021
  • The characteristics of vibrational stress (shock and vibration) during transport and the possibility of damage to the packaged pears by functional PLA tray were investigated. And this study was conducted to analyze how environmental conditions by simulated transport environment affect quality factors such as weight loss (%) and soluble solid content (SSC, %), and firmness (bioyield strength, kPa) of packaged pears by PLA tray and Expanded PET foam pad (Group 1), EPE cushion cup pad and net (Group 2) for exporting. Pears with or without vibration stress were stored for 30 days at low temperatures (5 ± 0.8℃, 80 ± 5% relative humidity). There was the statistically significant difference (p ≤ 0.05) between pears with and without vibration stress for weight loss, soluble solid content, and firmness (bioyield strength) after 30 days storage. Vibration stress accelerated pear quality deterioration during storage, resulting in increased weight loss, soluble solids content, and reduced hardness. The firmness (bioyield strength) and weight changes of pears with PLA trays were smaller than those of conventional packaging box systems. It was determined that the firmness of agricultural products was a quality factor closely related to the storage period and that PLA could be applied.

The Experimental Study of Distribution Characteristics of Lift-force Acting under Pier Deck (잔교상판(棧橋床板)에 작용(作用)하는 양압력(揚壓力) 분포특성(分布特性)에 관한 실험적(實驗的) 연구(硏究))

  • Park, Sang Kil;Park, Hyun Soo;Ahn, Ik Seong;Kim, Woo Saeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.83-90
    • /
    • 2009
  • This study describes the characteristics of distribution of lift-force acting under pier deck through physical experiment. The shape of peak wave pressure was sharp when compressed air existed but was not sharp without that. Values of lift-force was different between edge point and center point in the same block. Distribution of lift-force was expressed differently owing to dimensionless of deck length (l/L), wave steepness (H/L), clearance height per wave height (D/H). The dimensionless factor of D/H affected on the lift-force the clearance between still water surface and decks. This decided the maximum of lift-force. In the case of the same values of D/H, the lift-force are changed by the wave steepness (H/L). Because (D/H) become smaller as the wave steepness (H/L) is increased the height of decks must be decided with the condition which don't have the clearance with $D_{max}$ for the stable design of deck of pier. Effect of reducing lift force was greater in the on-shore than the off-shore according to compressed air existence. This researches points out that design of deck should retain compressed air in order to reduce wave lift force.

Experimental and clinical studies with impedance audiometry; the increase in air volume in the middle ear air system and the pneumatization of human temporal bones (측두골의 함기도와 중이강의 용적이 고막 임피던스에 미치는 영향에 관한 연구)

  • 민양기
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1977.06a
    • /
    • pp.4.4-5
    • /
    • 1977
  • The vibratory energy introduced into the external ear canal is changed by the mechanical factors of eardrum itself, the motility of ossicles, and the air cushion of tympanic cavity and the like. This study was designed to investigate the volume of middle ear cavity and mastoid air cell system as a factor of determining the accoustic impedance of middle ear system. The author studied how the increase in air volume of middle ear cavity effects on the acoustic impedance of middle ear system with dogs' ears and researched the correlation between the degree of pneumatization of temporal bones and the acoustic impedance of middle ear system by comparing the radiological findings of pneumatization (Law's and Towne's projection) with the acoustic impedance measurements with Madsen ZO 70. The result is as follows: 1 The tympanometric findings in control state revealed the curves of type A, and did not change in its configuration by the increase in the air volume of dogs middle ear system. 2. The static compliance of middle ear revealed a distinct and linear increase in proportion to the increase in air volume of middle ear system; the rate of increase was $0.05{\pm}0.02$ cc of static compliance per cc of air volume. 3. Authenticated in the above result and the tendency to increase in static compliance in proportion to the increase in the degree of pneumatization of temporal bones, there was significant regression equation between the degree of pneumatization of temporal bones (x variable) and the static compliance of middle ear system; $y=0.19x{\pm}0.16{\pm}0.05$ It is suggested that the difference in volume of middle ear system plays an important role in the change of the static compliance of middle ear, and the author concludes that the measurement of static compliance of middle ear has clinical value as diagnostic means of evaluating the degree of pneumatization of temporal bones along with some radiological examination.

  • PDF