• Title/Summary/Keyword: cushion factor

Search Result 22, Processing Time 0.021 seconds

Surface Dose and Transmission Factor for Vacuum Cushion (Vacuum Cushion 사용시 표면선량과 투과율 평가)

  • 김미화;이병용;전미선
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.74-78
    • /
    • 2002
  • The individual (customized) immobilization has been used to reproduce the patients' set-up on daily base. There are many various devices available commercially. To evaluate dosimetric characteristics of vacuum cushion, we analysed the surface dose and transmission factor for d$_{max}$ when patient is immobilized with vacuum cushion. Experiments were performed with 4 MV (Varian 4/100, USA), 6 MV, 15 MV (Varian CL2100C/D, USA) photon beams and five field sizes (5$\times$5, 10$\times$10, 20$\times$20, 30$\times$30, 40$\times$40 $\textrm{cm}^2$) on each occasion. Outputs were measured from surface of polysterene phantom to d$_{max}$ with four different thicknesses of cushion, which is 12, 32, 48 mm and only vinyl without styroforms. As results, the transmission factor for thicknesses of vacuum cushion was ranged from 0.9953 to 1.0043. The more the thickness of vacuum cushion is thick, the more surface dose delivered to patient is increased. The surface dose vary with the thickness of vacuum cushion for energy and field size. The skin reactions may result. But the variation is not serious in the clinic.

  • PDF

Biaxial creep property of ethylene tetrafluoroethylene (ETFE) foil

  • Li, Yintang;Wu, Minger
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.973-986
    • /
    • 2015
  • Ethylene tetrafluoroethylene (ETFE) foil is a novel structural material which has being used in shell and spatial structures. This paper studies biaxial creep property of ETFE foil by creep tests and numerical simulation. Biaxial creep tests of cruciform specimens were performed using three stress ratios, 1:1, 2:1 and 1:2, which showed that creep coefficients in biaxial tension were much smaller than those in uniaxial one. Then, a reduction factor was introduced to take account of this biaxial effect, and relation between the reduction factor and stress ratio was established. Circular bubble creep test and triangle cushion creep test of ETFE foil were performed to verify the relation. Interpolation was adopted to consider creep stress and reduction factor was involved to take account of biaxial effect in numerical simulation. Simulation results of the bubble creep test embraced a good agreement with those measuring ones. In triangle cushion creep test, creep displacements from numerical simulation showed a good agreement with those from creep test at the center and lower foil measuring points.

Static Cushioning Properties of Corrugated Fiberboard and Creep Behavior of Boxes (골판지의 정적완충특성과 골판지상자의 크리이프 거동)

  • 박종민;김만수;정성원
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.323-332
    • /
    • 1995
  • The horizontal compression test of some selected corrugated fiberboards was performed to determine the cushioning properties of them. Creep behavior of the corrugated fiberboard boxes, which have been widely used in rural area for packaging fruits and vegetables, was tested. The flute crushing stress of the corrugated fiberboard depended upon mainly the basic weight of the corrugated medium, comparing with the combined basic weight of corrugated fiberboard. When moisture content of the corrugated fiberboards was increased about 8% (d.b.), the flute crushing stress of them was decreased at the rate of 44%~64%. The cushion factor of the sample fiberboards showed much higher value at the lower moisture content of them. These trends appeared to be more obvious at the lower applied stress levels. Also, the cushion factors of the double wall corrugated fiberboards(DW) were observed to be little higher than those of the single wall corrugated fiberboards(SW). The creep behavior of the sample boxes was found to be highly moisture and static load dependent. The creep behavior of the corrugated fiberboard boxes could be well analyzed by the asymptotic slope derived from the creep model.

  • PDF

Development of Determination Criteria Installing Crash Cushion on Freeway Off-Ramp (고속도로 진출램프 부근의 충격흡수시설 설치여부 판단기준 개발에 관한 연구)

  • 하태준;박제진;오재철
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.107-116
    • /
    • 2002
  • Crash Cushion is a kind of safety facilities on roadside which acts the role of absorbing impact energy when vehicles are driven out of normal route such as Gore area of freeway off ramp. Criteria for severity index considering accident occurrence possibility are needed to have strong effect on installing the facilities. However, present criteria for establishing crash cushion design do not include such processes. Therefore, the paper presents two kinds of study to develop criteria for severity index. First of all, development of accident forecasting model on freeway off ramp is presented. The module is a relationship between accidents and road environment by negative binomial distribution (NB) which is called to reflect very well quality of accidents at Gore of crash cushion installed freeway Secondly, freeway exiting behavior model is developed because the human factor is the most important one. However, many literatures have shown between road environment and accidents which are more quantitative than human factor. The study supposed advanced process steps on actual freeway and analysed correlation between variables and accidents. The criteria for severity index is presented to determine whether to install or not by benefit cost analysis for each module. The standard for severity index will help to determine whether to install the crash cushion or not and to estimate severity for freeway and off ramp.

Cushioning Efficiency Evaluation by using the New Determination of Cushioning Curve in Cushioning Packaging Material Design for Agricultural Products (농산물 포장용 지류완충재의 새로운 완충곡선 구현을 통한 완충성능 평가)

  • Jung, Hyun Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • From the time the product is manufactured until it is carried and ultimately used, the product is subjected to some form of handling and transportations. During this process, the product can be subjected to many potential hazards. One of them is the damage caused by shocks. In order to design a product-package system to protect the product, the peak acceleration or G force to the product that causes damage needs to be determined. When a corrugated fiberboard box loaded with products is dropped onto the ground, part of the energy acquired due to the action of the gravitational acceleration during the free fall is dissipated in the product and the package in various ways. The shock absorbing characteristics of the packaging cushion materials are presented as a family of cushion curves in which curves showing peak accelerations during impacts for a range of static loads are shown for several drop heights. The new method for determining the shock absorbing characteristics of cushioning materials for protective packaging has been described and demonstrated. It has been shown that cushion curves can be produced by combining the static compression and impact characteristics of the material. The dynamic factor was determined by the iterative least mean squares (ILMS) optimization technique in which the discrepancies between peak acceleration data predicted from the theoretical model and obtained from the impact tests are minimized. The approach enabled an efficient determination of cushion curves from a small number of experimental impact data.

  • PDF

Optimum Packaging Design of Packaging Tray and Cushion Pad of Korean Pears for Exporting using FEA Simulation (FEA 시뮬레이션 기법을 이용한 수출용 한국 배 포장 트레이 및 완충패드 최적 포장설계)

  • Choi, Dong-Soo;Son, Jae-Yong;Kim, Jin-Se;Kim, Yong-Hoon;Park, Chun-Wan;Jung, Hyun-Mo;Hwang, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.843-852
    • /
    • 2020
  • Among the many packaging materials used in cushion packaging, there is a lack of optimum design for packaging trays and cushion pads used in pear packaging for export and domestic distribution. It causes over-packaging due to excessive material input, and can be solved by applying various parameters needed to optimize the design of the packaging tray and cushion pad considering the packaging material and the number of pears in the box. In the case of a cushion pad for pears, the economic efficiency of material and thickness should be considered. Therefore, it is possible to design a packaging tray and cushion pad depending on eco-friendly packaging materials (PLA, PET) used by applying appropriate design parameters. The static characteristics of the materials used for the packaging of pears were analyzed using FEA (finite element analysis) simulation technique to derive the optimal design parameters. In this study, we analyzed the contact stress and deformation of PET, PLA tray (0.1, 0.5 1.0, 1.5 and 2 mm) and PET foam (2.0, 3 .0 and 4.0 mm) with pears to derive appropriate cushion packaging design factors. The contact stress between the pear and PET foam pad placed on PLA, PET trays were simulated by FEA considering the bioyield strength (192.54±28 kPa) of the pears and safety factor (5) of packaging design, which is the criterion of damage to the pears. For the combination of PET tray and PET foam buffer pad, the thickness of the PET foam is at least 3 mm, the thickness of the PET foam is at least 1.0 mm, the thickness of the foam is at least 2 mm, and if the thickness of the PET tray is at least 1.5 mm, the thickness of the foam is at least 1 mm, suitable for the packaging design. In addition, for the combination of PLA tray and PET foam pad, the thickness of the PET foam was not less than 2 mm if the thickness of the PLA tray was 0.5 mm, and 1 mm or more if the thickness of the PLA tray was not less than 1.0 mm, the thickness of the PET foam was suitable for the packaging design.

Measurement of Maneuverability in the Restricted Area by Numerical Model Ship (수치 모형선에 의한 제한수역에서의 조종성능 측정)

  • Park, Byung-Soo;Kim, Jong-Hwa;Kim, Cheog-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.4
    • /
    • pp.363-367
    • /
    • 2009
  • The ship maneuverability is changed by the effects of the bank cushion and the squat in the restricted water area. It is difficult to test the ship maneuverability by the real ship in the restricted water area because of ship's safety. In this study, a numerical model ship was used to simulate the ship's motion and to get information about the bank cushion and the squat in the restricted water area. The less apart from the quay the ship ran, the more ship's heading changed. The greatest change of ship's heading was $22.37^{\circ}$ when a ratio of the length between ship and quay to ship's breadh(=D/B) was 0.2. The squat of the ship was greater in shallower water and at faster speed. The greatest squat was 0.29m when a ratio of water depth to ship's draft(H/d) was 1.25 and ship's speed was 8 knots, the reduced speed was found to be the most important factor in the shallow water area for safety of the ship.

  • PDF

Experiment and analysis of dynamic coupling phenomenon in a seat (시트에서 발생하는 동적 커플링 현상 실험 및 분석)

  • Min, Kyongwon;Kim, Deokman;Park, Hyunkyu;Park, Junhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.1004-1006
    • /
    • 2014
  • This study was conducted to improve the understanding of factors affecting an automobile seat cushion in dynamic conditions. When there are two dummies on the seat to measure each places respectively at once, the shape of the transfer function changes because the dummies affect each other as if they are linked with some kind of a spring when under excitation. A simple two-degree-of-freedom linear model is used to define a translational stiffness of dynamic coupling phenomenon. The cushion deflection model was created to find the relation between dynamic coupling and distance. Experimental set-up was made to compare with the two-degree-of-freedom linear model. The dynamic coupling factor could be utilized to improve the dynamic comfort of automobile seats.

  • PDF

Polyurethane Flexible Foam for Automotive Seat Cushion Having Both Superior Static and Dynamic Properties (우수한 정적, 동적 특성을 보이는 자동차 시트용 폴리우레탄 발포체)

  • Hong, Chae-Hwan;Back, Han-Sung;Kim, Kyung-Man;Kim, Sung-Yoon;Choi, Sok-Min;Hwang, Tae-Won
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • Polyurethane flexible foams have been widely used for automotive seat cushions because of their excellent performance. It has been required so far to reduce the density of seat cushion foam. However, recently, improving the riding comfort of seat cushions becomes more important. With regard to riding comfort, we investigated the improvement of static properties such as the ball rebound property and the hysteresis loss. We also studied the vibration characteristics, which are well known as an important factor to affect the comfort performance during driving.

A Study on Characterizing a Healthy Driving Posture (건강한 운전 자세 특성 연구)

  • Kim, Darae;Choi, Hyungyun;Lee, Joungho;Ahn, Sungmin;Lee, Shiuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.121-129
    • /
    • 2013
  • To find a healthy driving posture, in this study, survey and empirical analysis given onto measurement of car-seat angle has been performed. Among 153 male respondents, those drivers who has minimum 5 year experience and 2 hours daily driving has been selected by a multiple screening process. They were further confirmed to have no discomfort history in any body region caused by the driving task. Final 44 people verified that their actual driving posture is not significantly different (p = 0.692) from healthy one they think. And their data, accordingly, the healthy driving postures are clustered based on the same seat-cushion angle, seat-back angle and trunk-thigh angle. Consequently, three seat-angles of the 44 subjects showed a significant difference only with their height information which is the most effecting factor on driving posture among the physical characteristics. That is a first result categorized healthy driving posture classified physical, if it were departmentalized into additional study, could be able to reflected a factor of "healthy" on car seat design.