• Title/Summary/Keyword: curvilinear coordinates

Search Result 53, Processing Time 0.014 seconds

A Study on the Length of DMZ and MDL (비무장지대 및 군사분계선의 길이에 관한 연구)

  • KIM, Chang-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2019
  • This study is to measure the length of the Demilitarized Zone and the Military Demarcation Line(MDL) on the Korean Peninsular. For this purpose, maps of the Armistice Agreement Volume II were used. These maps are nine sheets. In order to extract the MDL shown on the map, coordinates were assigned to the scanned image maps using the georeferencing module of ArcGIS based on the sheet line coordinates. The accuracy of the extracted vectors was checked by overlaying them on the maps of the Armistice Agreement Volume II. And I tried to validate these vectors through comparative analysis with vectors extracted from Kim(2007). Vectors extracted from Kim(2007) had errors in the curvilinear parts of the MDL, but the vectors extracted from this study exactly matched the MDL in the Armistice Agreement Volume II. The measured length is 239.42km(148.77miles). This means that the expression '155mile MDL' or '248km DMZ' in papers, reports or mass media has so far been inappropriate. I think this study will be able to provide information on the exact length of the DMZ in studies related with DMZ or in policy decisions by the national and local government. However, it is deemed necessary to verify this result by national organizations such as the NGII(National Geographic Information Institute). After these verification procedures, I hope that the national government will inform the people of the exact length of DMZ and MDL.

Stability Analysis of Boundary Layers on Airfoils by using PSE (PSE를 이용한 익형 위 경계층 안정성 해석)

  • Park, Dong-Hun;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1055-1065
    • /
    • 2009
  • In this study, stability analysis of boundary layers on airfoils is performed by using parabolized stability equations(PSE). Boundary layer edge conditions are obtained by compressible inviscid flow calculations. Mean velocity and temperature profiles of the laminar boundary layer are obtained by solving compressible boundary layer equations in generalized curvilinear coordinates with fourth order accuracy in the wall normal direction. Laminar mean flow profiles are used as input data for PSE to investigate growth rates of disturbances and stability characteristics. For the cases of boundary layer on NACA0012 and HSNLF(1)-0213 airfoils at Mach number 0.5, growth rates with respect to disturbance frequencies and profiles of disturbance amplitude are investigated. The effect of angle of attack on stability characteristics are examined at both upper and lower surfaces. The neutral stability curves, effect of Mach number and effect of airfoil section shapes are also analyzed.

Numerical Simulations of Cellular Secondary Currents in Open-Channel Flows using Non-linear k-ε Model (비선형 k-ε 모형을 이용한 개수로 흐름에서의 격자형 이차흐름 구조 수치모의)

  • Kang, Hyeongsik;Choi, Sung-Uk;Park, Moonhyeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.643-651
    • /
    • 2008
  • In the present paper, turbulent open-channel flows over longitudinal bedforms are numerically simulated. The Reynolds- averaged Navier-Stokes equations in curvilinear coordinates are solved with the non-linear $k-{\varepsilon}$ model by Speziale( 1987). First, the developed model is applied to rectangular open channel flows for purposes of model validation and parameter sensitivity studies. It is found that the parameters $C_D$ and $C_E$ are important to the intensity of secondary currents and the level of turbulent anisotropy, respectively. It is found that the non-linear $k-{\varepsilon}$ model can hardly reproduce the turbulence anisotropy near the free surface. However, the overall pattern of the secondary currents by the present model is seen to coincide with measured data. Then, numerical simulations of turbulent flows over longitudinal bedforms are performed, and the simulated results are compared with the experimental data in the literature. The simulated secondary currents clearly show upflows and downflows over the ridges and troughs, respectively. The numerical results of secondary currents, streamwise mean velocity, and turbulence structures compare favorably with the measured data. However, it is observed that the secondary currents towards the troughs were significantly weak compared with the measured data.